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28.1 Cognition: Definition 

• 

Cognition is the integrating process that utilizes many 
different forms of memory, creates intemal represen­
tations of the experienced world and provides a ref­
erence for expecting the future of the animal's own 
actions. It thus allows the animal to decide between 
different options in reference to the expected outcome 
of its potential actions. All these processes occur as 
intrinsic operations of the nervous system, and pro­
vide an implicit form of knowledge for controlling 
behavior. None of these processes need to - and cer­
tainly will not - become explicit within the nervous 
systems of many animal species (in particular inverte­
brates and lower vertebrates), but such processes must 
be assumed to also exist in these animal species. It is 
the goal of comparative animal cognition to relate the 
complexity of the nervous system to the level of inter­
nal processing. 

Neural integration processes are manifold and 
span a large range of possibilities all of which can be 
viewed from an evolutionary perspective as adapta­
tions to the specific demands posed by the environ­
ment to the particular species. At one extreme one can 
find organisms dominated by their inherited informa­
tion (phylogenetic memory) developing only minimal 
experience-based adaptation. At the other extreme, 
phylogenetic memory merely provides a broad frame­
work, and experience-based memory dominates. 
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Phylogenetic memory controls behavior in rather 
tight stimUlus-response connections requiring little if . 
any interna\ processing other than sensory coding and 
generation of motor programs. The factors determin­
ing the specific combination and weights of inherited 
and experience-dependent memories in an individual 
are not yet well understood. A short individual life­
time, few environmental changes during a lifetime, 
and highly specialized living conditions will favor the 
dominance of inherited information; a longer individ­
uallifetime, less adaptation to particular environmental 
niches and rapid environmental changes relative to the 
lifespan reduce the value of phylogenetic memory and 
increase the role of individualleaming. Social living 
style also seems important. Here the species' genome 
must equip the individuals for acting under much more 
variable environmental conditions because of the soci­
ety's longer lifetime, and because the communicative 
processes within the society demand a larger range of 
cognitive processes. 

The complexity and size of the nervous sys­
tem may be related to the dominance of inherited or 
experience-dependent memories, in the sense that 
individual learning demands a larger nervous system 
having greater complexity. However, the primary 
parameter determining the size of the nervous system 
is body size, and secondary parameters like richness 
of the sensory world, abundance of motor patterns and 
cognitive capacities, are difficult to relate to brain size, 
because such parameters cannot be adequately mea­
sured and thus a comparison based on them is practi­
cally impossible between animals adapted to different 
environments. Nevertheless, it appears obvious that 
animals differ with respect to their sensory, motor, and 
cognitive capacities. Individual learning within the 
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species-specific sensory and motor domains will lead 
to more flexible behavior, and thus to more advanced 
cognitive functions. Predicting the future will there­
fore be less constrained, and more options will enrich 
the animal's present state. 

Cognitive components of behavior are characterized 
by the following faculties: (i) rich and cross-linked 
forms of sensory and motor processing; (ii) flexibility 
and experience-dependent plasticity in choice perfor­
mance; and (iii) long-term (on the timescale of the 
respective animal's lifespan) adaptation of behavioral 
routines. These three features allow the creation of novel 
behavior through different forms of learning and mem­
ory processing. Among them, we can cite: (i) rule learn­
ing and causal reasoning; (ii) observatory learning 
during communication, imitation, and navigation, and 
(iii) recognition of individuals in a society and self-rec­
ognition. All these characteristics are based on implicit 
forms of knowledge and do not require any explicit (or 
conscious) processing. However, internal processing at 
the level of working memory (or representation) as an 
indication of rudimentary forms of explicit processing 
may exist in invertebrates and lower vertebrates within 
the context of observatory learning and social 
communication. 

28.2	 Innate and Learned Behavior 

Innate and learned behaviors are intimately connected 
leading to the concept of preparedness for learning. 
Mice associate nausea induced by injection of LiCI or 
radioactive irradiation with novel taste and smell but 
not with light or sound. Song birds are prepared to 
learn the species-specific song, and only some species 
may be more open to aberrant songs. The idea that 
anything can be learned if associativity rules are fol­
lowed as put forward by Pavlov (1849-1936) and the 
behaviorists like B.E Skinner (1904-1990) is not sub­
stantiated, and many examples have been described for 
species-specific constraints in learning. 

Often similar behaviors are performed by closely 
related species, but in one species it involves learning, 
in the other it is solely controlled innately. The two 
species of braconid wasps Cotesia glomerata and 
Cotesia jiavipes are stem-boring parasitoids. While C. 
jiavipes exhibits innate preference for its host's odors ­
the larvae of Pieris brassica (Lepidoptera) - the 
closely-related C. glomerata learns the varying odor 

profiles of its Pieris host larvae, which depend on the 
plants it feeds on. No other differences in behavior 
between these two species were found, indicating that 
experience-dependent adjustment and innate stereo­
typy are two close strategies and are not related to any 
great differences between the neural systems involved. 
It will be interesting to search for structures in the 
brain that differ in these two species and may be related 
to these two strategies. 

A particularly close connection between innate and 
learned behavior is imprinting (see Chap. 25), the 
programmed forms of learning described in great detail 
by ethologists like Konrad Lorenz (1903-1989) for 
birds, but fast and stable learning early on in ontogeny 
is a phenomenon in all animal species. Slave-making 
ants have colonies in which two species of social 
insects coexist, one of which parasitizes on the other. 
Slave-making ants invade colonies of other ant species 
and transport the pupae back to their own nest. Adults 
emerging from these pupae react and work for the 
slave-making species as if it were its own species. The 
basis for this phenomenon may be olfactory imprinting 
by which the slave ants learn to recognize the slave­
makers as members of their own species. 

The mechanistic basis of olfactory imprinting has 
been studied in the fruit fly Drosophila melanogaster. 
Synaptogenesis in the antennallobe, the primary olfac­
tory neuropile in the insect brain (see Chap. 13), starts 
in late pupae and continues during the first days of 
adult life, at the same time as the behavioral response 
to odors matures. The antennal lobe is made up of 
functional units, the glomeruli. The glomeruli DM6, 
DM2, and V display specific growth patterns between 
days I and 12 of adult life. The modifications associ­
ated with olfactory imprinting take place at the critical 
age. Exposure to benzaldehyde at days 2-5 of adult 
life, but not at 8-1 I, causes behavioral adaptation as 
well as structural changes in DM2 and V glomeruli. 

These examples show that (i) animals often exhibit 
innate preferences for signals allowing to rapidly and 
efficiently detect biologically relevant stimuli in their 
first encounters with them; (ii) such preferences can 
but may not always be modified by the animals' expe­
rience. It is still unknown how these preferences are 
hardwired in the naIve nervous system, but since they 
have been selected through the species' evolutionary 
history and thus belong to its phylogenetic memory it 
must be assumed that they are programmed by devel­
opmental processes. 
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28.3	 Learning: Elemental Forms 
of Associative Learning 

Learning is the capacity to change behavior as the 
result of individual experience in such a way that the 
new behavior is better adapted to the changed condi­
tions of the environment. Learning can be grouped into 
three broad categories: simple nonassociative learning 
like habituation and sensitization, associative learning 
including classical conditioning and instrumental 
(operant) learning, and higher forms of associative 
learning characterized by the lack of an obvious exter­
nal reinforcing stimulus and by directed attention of 
the animal to the outcome of self-generated behavior 
as in observatory learning and learning during playing 

(Table 28.1). 

28.3.1	 Nonassociative Learning 

Stimulus repetition without any consequences leads 
to a stimulus-specific decrease of stimulus-induced 
responses (habituation), a lower sensitivity to the 
stimulus and less attention. Habituation is character­
ized by stimulus specificity, spontaneous recovery and 
dishabituation, a phenomenon that results from strong, 
sensitizing stimuli. These properties exclude the possi­
bilities that habituation is based on sensory adaptation 
or motor fatigue. Sensitization results from a strong 
and unexpected stimulus that induces a state of general 
arousal, higher sensory sensitivity, and alerted motor 
responses, Repetition of sensitizing stimuli leads to fast 
habituation, and single stimulations may induce only 
short-lasting arousal. Sensitizing stimuli often carry an 

preParedness program 

aversive innate meaning relating these stimuli to uncon­
ditioneq stimuli in associative learning (see below). 

The cellular and neural correlates of nonassociative 
learning are covered in Chap. 26. Eric Kandel and his 
coworkers conceptualized a cellular alphabet of neural 
plasticity leading to a hierarchy of brain mechanisms 
of learning and memory formation [10]. 

28.3.2 Classical Conditioning 

Associative connections between stimuli, events, and 
actions are the source of information that animals use to 
extract causal relations in the environment. Figure 28.1 
gives examples of basic paradigms of classical condi­
tioning and Table 28.2 lists additional paradigms. 

A hungry honeybee responds to the stimulation of the 
sucrose receptors on the antennae by an extension of its 
proboscis (tongue) and sucks the sucrose solution. This 
stimulus arouses the animal, induces directed searching 
responses, releases an innate response (the proboscis 
extension response, which represents the unconditioned 
responses, UR), and acts as an unconditioned reward­
ing stimulus (US) for neutral stimuli (CSs) like odors 
experienced shortly before the US. These CSs can either 
precede the US which leads to an association with the 
US (denoted as CS+), or they follow the US at an interval 
(backward pairing), or are not paired with the US at all. 
In these cases they are not associated with the US, thus 
called CS-. The probability of a group of animals to 
extend their probosces during the CS+ in expectation of 
the US (conditioned responses, CR) increases with the 
number of forward pairing trials (CS+/US acquisition 
Fig. 28.1 a) and does not change for backward pairing of 
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US/CS (or may decrease over trials if CS- is first learning (Fig. 28.1a, right graph). This form of inhibitory 
responded to due to generalization, see Fig. 28.1d). learning can depend on the context conditions in which 
Pavlov called the first form of conditioning excitatory the animal experiences the loss ofpredictive power of the 
learning, the latter one inhibitory learning. No change CS for US. It is, therefore, concluded that the memory of 
of behavior occurs if the animals experience stimulations the CS-US connection is not lost but rather a new mem­
of the CS alone or the US alone, but multiple exposures ory is formed, namely that now the CS predicts the 
to the CS alone may retard acquisition of this CS in later absence of the Uc. This conclusion is supported by the 
forward-pairing trials (CS+/US). Conditioned animals finding that at a later time the CS will partially gain its 
lose their CR to the CS+ if the CS is presented multiple predictive power for the US (spontaneous recovery after 
times without the US, an indication of extinction extinction learning, Fig. 28.1a, right graph). In classical 
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Table 28.2 A selection of associative learning paradigms 

I: Sensory preconditioning AlB 

2. Differential Conditioning AlUS 
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A, H, X, Y denote neutral stimuli, US reinforcer; the sign/indi­
cates paired presentation of the stimuli, A- or H- presentation of 
the respective stimulus alone, A +H both stimuli are presentad 

conditioning, typically the establishment of a CS-CR 
cOlUlection does not require any particular behavior of 
the animal. In an omission paradigm (Fig. 28.1b) the ani­
mal is rewarded when it does not respond to the CS but 
not rewarded when it responds. Still honeybees under 
these conditions learn equally well indicating that an 
operant component is not involved. Often learning is not 
directly reflected in a behavioral change and can be 
uncovered only later when animals are exposed to for­
ward-pairing trials. In honeybees backward pairing of 
US and CS in a first phase of conditioning will lead to 
lower acquisition to the same CS in a second phase 
(Fig. 28.1c). The acquisition function to forward pairing 
of the same CS with the US is depressed as compared to 
an acquisition function without or with a lower number 

..
 
Fig. 28.1 Elemental fonns ofclassical conditioningexemplified 
for odor reward cooditiooing in honey bees. (a) lbe inset shows 
how a bee is harnessed in a tube. The hungry bee extends its probos­
cis (tongue) reflexively when its antennae taste sucrose, the uncon­
ditioned stimulus, US. Odors received by the olfactory receptors on 
the antennae serve as conditioned stimuli, CS. The /eft graph shows 
how the probability of the conditioned responses in a group of ani­
mals (prohoscis extension response, PER) increases with the num­
ber of forward pairing trials (CSlUS). Backward paired trials (US/ 
CS) do not lead to conditioned PER. The right graph gives the 
result of an extinction experiment. Repeated exposures to the CS 
without the US leads to reduction ofPER probability. After an inter­
ruption of 1-2 h the conditioned PER recovers partially, an effect 
known as spontaneous recovery from extinction. (b) Classical con­
ditioning can be distinguished from operant conditioning by an 
omission procedure. The US is only given if the animal did not 
show the conditioned response (omission). 'This omission acquisi­
tion function of the PER shows pure classical conditioning, because 
acquisition is not reduced (compare with a). (c) If animals experi­
ence unpaired CS und US presentations, subsequent acquisition to 
paired CSIUS trials is retarded. The upper curve (0 unpaired trials) 
provides the control group (normal acquisition after no exposure to 
unpaired trials). The other two curves show that retardation of 

AlUS B tested 

B- A and B tested 

AlUS A tested. 

B/A il tesied 

Nus A l!"d Btested 

A+BIUS B tested 

simultaneously, A tested or H tested means that the respective 
stimuli are presented without the reinforcer in order tp evaluate 
what the animal has learned about A and B 

of such preexposures. This form of learning (latent learn­
ing) appears to involve associations of the stimuli with 
those emanating from the context, because the resistance 
to acquisition effect can be context dependent, indicating 
that stimulus associations are established without the 
contribution of an US. Inhibitory learning of CS- in a 
first phase of differential conditioning is also seen when 
the CS- becomes the CS+ in a second phase (reversal 
conditioning, Fig. 28.ld). Acquisition in the second 
phase is retarded. The reinforcing property of the US can 
also be transferred to a CS (second-order conditioning, 
Fig. 28.1e). CSI is forward paired with US in a first 
phase. In a second phase a novel CS (CS2) is forward 
paired with CSI (CS2ICSI pairing). CS2 is learned (rise 
of CR probability to CS2) and responses to CS I 

acquisition depends on the number of previously experienced 
unpaired trials. (d) Differential conditioning involves two CSs, CS+ 
is forward-paired with US, CS- is backward-paired. Conditioned 
PER rises for the CS+. CS- is initially responded to more strongly 
because of generalization between CS+ and CS-. Fwther CS­
unpaired trials lead to a reduction of PER to CS-. In a second phase 
CS- becomes the CS+. Now acquisition is retarded because of the 
unpaired trials in the first phase. (e) Second-order conditioning. 
CS I is forwards paired with US in the first phase. In the second 
phase a new odor (CS2) is forward-paired with CS I (first CS2 then 
CSI). The reinforcing capacity of CSI which it gained in the first 
phase is transmitted to CS2. Concurrently the conditioned PER is 
reduced for CS 1. (I) The effect of CSIUS interval. The left graph 
shows how conditioned PER depends on the interval between CS 
and US (gray vertical bar extending from 0 to 2 s on the interval 
scale). The CS is presented for 2 s either before (left side: +) or after 
US (right side: -). Optimal conditioning is found for forward-pair­
ing. The right graph shows the effect of backward-pairing. Since 
PER is"zero to the CS wben it follows the US, the hidden inhibitory 
component of backward-pairing was uncovered by exposing the 
animal in a second phase to forward-pairing to the same CS. 
The inhibitory backward-pairing effect is strongest for a UC-CS 
interval of 15 s 



635 634	 R. Menzel 

extinguish. A crucial parameter in classical conditioning 
is the contiguity between CS and US. Figure 28.1£ shows 
how excitatory and inhibitory learning depend on the 
timing of the CS with the US. A preceding CS (CS+) 
gains its predictive power for the US most effectively for 
short intervals before the onset of US. Excitatory learn­
ing is reflected directly in the probability of CR induced 
by CS+. Inhibitory learning is often not directly reflected 
in a behavioral change. In that case it needs to be uncov­
ered in' a second phase of conditioning, e.g., a forward 
pairing of the sameCS+ with US (as shown in Fig. 28.lc). 
Stronger inhibitory learning will lead to stronger resis­
tance to acquisition in the second phase. The timing of 
US and CS- in inhibitory learning can be different from 
that ofexcitatory learning. In the honeybee optimal inter­
vals between US and CS- lie between 5 and 25 s after 
US onset. 

Pavlov's terms excitatory and inhibitory condition­
ing do not refer to the strength or probability of behav­
ior controlled by learning but to the connections 
developed between CS and US. If the US is an aversive 
stimulus, excitatory conditioning will lead to less CR, 
and inhibitory learning to more CR. It is an interesting 
but umesolved question how excitatory and inhibitory 
conditioning in reward and punishment learning are 
related. Does inhibitory reward learning resemble 
aspects of excitatory punishment learning? In other 
words, does backward conditioning to an aversive 
stimulus induce some rewarding potential ("release 
from punishment") of the CS? 

The paradigms of classical conditioning emphasize 
the importance of CS-US contiguity, however the 
latent learning phenomenon (Fig. 28.1 c) indicates 
already that this cannot be the only parameter control­
ling learning. Other paradigms strengthen this conclu­
sion. In sensory preconditioning (Table 28.2) two 
CSs (CS I and CS2) are first presented together with­
out any US. In a second training phase, one of them 
(CS I) is paired with the US. In the test phase, CS2 is 
tested alone and it is found that also CS2 induced CR 
although CS2 was never paired with the US. In block­
ing experiments (Table 28.2) a first training phase con­
sists ofCSl-US pairings. In the second training phase, 
CS2 is added, so that the compound CSlCS2 is paired 
with the US. Surprisingly, it is found that CS2 is less 
well or not at all learned although it is paired with the 
US. Learning of CS2 is somehow blocked by the expe­
rience of CS I-US pairing in the first phase. These and 
other paradigms of classical conditioning document 
the limitations of a simple contiguity effect and call for 
other explanations. These will be described below. 

The rules of associative learning have been worked 
out in great detail by Pavlov and the American behav­
iorists. These rules are of heuristic value if applied 
with adequate care and if one considers the restriction 
that species-specific constraints and environmental 
conditions may lead to exceptions. In particular, they 
provide a frame for the design of experiments aiming to 
extract the crucial components in associative behav­
ioral change. Rules of learning emphasize the role of 
the contiguity of events (their temporal relations) and 
their contingencies (the probabilities of co-occurrence 
of events). Because contiguity and contingency of 
events are more important than sensory modality or the 
motor pattern involved, forms of learning can be com­
pared across species, environmental conditions, sen­
sory modalities, and behavioral acts. In the course of 
learning, neutral environmental stimuli and actions of 
the animal lead to meaningful outcomes and thus 
become predictors for that outcome. When a hungry 
animal finds food, the own actions and the signals asso­
ciated with this meaningful outcome are stored for 
future behavior. The meaningful component plays a 
decisive role because it surprises the animal, it has an 
innate or learned value with respect to the need of the 
animal, and it has the potential to reinforce the stimuli 
and actions with its value. Such a meaningful stimulus 
can either be (i) an external stimulus (in classical con­
ditioning it is called the unconditioned stimulus, US, 
with the value of acting as a reward or a punishment), 
(ii) a successful or failing action (as in instrumental 
learning. see below), or (iii) an internally generated 
value function as in observatory representation related 
to meaning and value (see below). 

The most powerful rule of associative learning has 
been formalized by Rescorla and Wagner [21) (see 
Box 28.1). Many phenomena of learning are well cap­
tured by this concept called the delta rule, which states 
that animals learn when an event is not expected and 
therefore surprises the animal. The rule defines whether 
and how much is learned depending on how surprising 
the association ofCS and US is, and surprise is quantified 
by the difference between expected and actual event. The 
theory also states that all CSs involved in a learning trial 
compete for the limited capacity of this difference (capac­
ity of attention). A number of learning phenomena are 
well captured by the theory (Box 28.1). Expectation and 
surprise are concepts of a cognitive interpretation for 
these simple forms of associative learning, and although 
the authors did not relate their theory to cognitive con­
cepts the success of the theory also lies in the cognitive 
dimension of its key parameter, expectation. 
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The neural substrates of associations as established 
in classical conditioning are thought to be related to a 
rule of neural plasticity as formulated by Hebb in 1949 
[11), and which can be summarized by the catchy sen­
tence: "Wire together what fires together" (see Chap. 25). 
Indeed phenomena like associative LTP and the molec­
ular properties of coincidence detectors such as the 
NMDA receptor or the adenylyl cyclase and other pro­
teins (see Chap. 26) illustrate molecular mechanisms 
of associative plasticity in the nervous system. 
However, there are several problems with these ideas: 
(I) The timing of CS and US in both excitatory and 
inhibitory conditioning (usually several to many sec­
onds) are very different from the timing of spikes in 
spike timing plasticity (usually in the range of a few 
ms). The discrepancy becomes even more drastic in 
learning phenomena like nausea-induced learning in 
which the interval between CS and US can be hours. 
(2) Latent learning, sensory preconditioning and block­
ing indicate that contiguity of stimuli is not the only 

and possibly not even the decisive parameter in asso­
ciative learning. Rather properties like expectation, 
deviation from expectation (error signal), and attention 
need to be considered for which individual molecular 
and cellular properties are not sufficient but network 
properties need to be considered. 

28.3.3	 Instrumental or Operant 
Conditioning 

As opposed to classical conditioning, instrumental 
or operant conditioning requires an active involve­
ment of the animal. A spontaneously generated 
behavior leads to an event (a value signal V). For 
example, a hungry animal searches for food (it pro­
duces actions A) in a particular sensory environment 
(S) and finding it induces a rewarding signal (V). 
Under these conditions the animal learns the 
relations between its own actions A, the external 
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Fig. 28.2 Conceptual model of neural operations poten­
tially underlying operant learning. Two motor pallerns 
(actions AI and A2) are spontaneously generated by pallern 
generators (aI, a2), whose execution is mutually exclusive by 
reciprocal inhibition. (a) In the case of operant learning with 
an external value signal either action A I or A2 leads to a desir­
able (or avoided) effect as signaled by reward or punishment 
(red line: valuc signal V). The neural correlate of V strength­
ens or weakens the respective motor pallerns by associatively 
altering their corresponding neural activities a I or a2. These 
associative alterations may also depend on the sensory signals 
S (dOlled line) connected with the conditions under which the 

conditions signaling the outcome (S) and the evalu­
ating stimulus (V). Thus, there are three associa­
tions to be formed: that between action A and 
stimulus (S) [A-SJ, the action-value association 
[A-V], and the stimulus-value association [S-V]. 
Figure 28.2a presents a conceptual model of neural 
operations potentially underlying operant learning. 
Two motor patterns (actions Al and A2) are sponta­
neously generated by pattern generators (see Chap. 
23) ai, a2, whose execution is made mutually exclu­
sive by reciprocal inhibition. Action Al or A2 lead 

. to a desirable (or avoided) effect as signaled by 
reward or punishment (value signal V). The neural 
correlate of V strengthens or weakens the respective 
motor pattern by associatively altering their corre­
sponding neural activities a I or a2. These associa­
tive alterations may also depend on the sensory 
signals S connected with the conditions under which 
the value signal occurs. The three associations ([A­
S], [S-V], [A-V]) are partly independent, because 
the same [A-V] association can be formed for dif­
ferent S, or different actions can lead to the same 
outcome. [S-V] associations are of the Pavlovian 
kind (classical conditioning) and appear to be 
established independently and in different neurons 

•.•• N •••• 

"j--- -------···l-·f--· 
Al A2
 

SF SF
 

value signal occurs. The two fonns of associations (sensory­
value association [S-V]) and (action-<lutcome association 
[A-V]) can be related to classical and operant conditioning 
effects, respectively (see text). (b) In the case of operant learn­
ing without an external value signal, the sensory feedback SF 
resulting from the execution of motor pallern A I or A2 is com­
pared with the corollary discharge (brown lines) of the respec· 
tive motor pallerns al or a2 (C: comparator). A mismatch leads 
to an error signal (blue dolled line) that activates an internal 
value system (iV, red line) leading to associative alterations in 
the activation of a I or a2 

than the other two associations: [A-V] associations 
are related to goal-directed behavior (or operant 
behavior in a strict sense); [A-S] associations are 
thought to lead to habit formation, the develop­
ment of stereotypical motor patterns under particu­
lar stimulus conditions. Behavioral test procedures 
allow to at least partially separate between these 
three forms of learning. For example, if the animal 
is exposed to highly variable contingencies between 
own actions and outcome [A-V] associations are 
down-graded and habit formation [A-S] becomes 
the dominant behavior adaptation. In the extreme 
case when own actions are fully independent of the 
occurrence of the value signal animals become pas­
sive and produce no actions any more, a situation 
called learned helplessness. 

Different brain regions are involved in habitual 
[A-S] and goal directed [A-V] learning in mam­
mals. [A-S] learning can be mediated at many loca­
tions within the nervous system, including the spinal 
cord, the basal ganglia and the striatum, whereas goal. 
directed [A-V] learning is mediated by cortical struc­
tures such as the prelimbic area and the insular cortex, 
and by neurons in the basal ganglia. In fast sequences 
of operant learning trials (seconds), neurons of the 

pn;frontal cortex and the caudate nucleus (a structure 
or' the basal ganglia in the mammalian brain) code 
outcome-reward relations in their sustained activity: 
correct responses in the last trial lead to lasting activ­
ity, wrong responses to reduced activity. This finding 
indicates that the network of neurons involved in oper­
ant learning stores the neural correlates of outcome­
reward relations for some extended time. This might 
have two reasons: to keep a transient memory trace for 
the next decisions to be made and to facilitate long­
lasting storage of the memory trace in stable altereC: 
synaptic strengths which requires protein syntbesis 
(see Chap. 26). 

Studies on operant learning in Aplysia and 
Drosophila allow tracing some of these associa­
tions to particular identified neurons 'and cellular 
pathways. The motor neuron B52 in the feeding pat­
tern generator of Aplysia receives input from both 
mechanosensory neurons (representing the CS) and 
the value-representing dopamine neurons. The dop­
amine neurons also synapse onto presynaptic ter­
minals of the mechanosensory neurons upstream to 
B52. Coincident activity of dopamine neurons and 
B52 leads to [A-V] associations of operant behavior 
by enhancing the excitability of B52 (threshold for 
spiking is reduced and input resistance enhanced). 
Coincident activity of dopamine neurons and mech­
anosensory neurons strengthens their presynaptic 
activity (classical conditioning, [S-V] association). 
Interestingly, when [S-V] associations are induced 
alone B52 excitability is reduced indicating a (as yet 
unknown) link between classical and operant condi­
tioning in this circuit. In Drosophila, operant learn­
ing (e.g., a stationary flying fly in an arena in which 
the animal controls the appearance of stimuli by its 
behavior and is heated up when is steers towards a 
particular stimulus) involves both classical [S-V] and 
operant [A-V] conditioning. The first one develops 
fast, the latter slowly. The transition from the fast to 
the slow learning effect requires the mushroom body. 
The cellular pathways underlying the two forms of 
plasticity differ. Classical conditioning requires the 
rutabaga gene-related adenylyl cyclase, operant con­
ditioning a protein kinase Codependent pathway (see 
Chap. 26). 

Some forms of operant learning lead to improve­
ment of motor performance just by the repetition of 

motor program without an obvious evaluating signal. 
In many animal species movements are not perfect 
when performed the first time. Running, swimming, 
flying, singing, and other forms of communication 
may become better, faster, and less energy consum­
ing with practice. New motor patterns in manipu­
lating objects (e.g., pollinating insects extracting 
nectar and pollen from flowers, birds building a 
nest and using tools, or mammals preparing food 
for ingestion) improve with exercise. If the execu­
tion of a motor pattern is disturbed (for example, by 
injury to a limb) changes of the movement pattern 
can adjust for the damage. The concepts accounting 
for these forms of learning (Fig. 28.2b) assume the 
comparison between a sensory feedback (SF) result­
ing from the execution of movement AI, A2 (the 
outcome) and a neural template (an efference copy) 
of tlie neural program initiating the movement. The 
efference copy is also called a corollary discharge, 
because it accompanies the neural activity leading 
to the motor pattern and runs in parallel to it (see 
Chap. 23). The comparison between efference copy 
and sensory feedback in a neural comparator (C) 
leads to an error signal (blue line in Fig. 28.2b) that 
activates an internal neural value system leading to 
associative alterations in the activation of al or a2. 
The corollary discharge can be considered as a neu­
ral correlate of expectation, a pattern of activity that 
precedes conditions in the external world. Thus, on 
a formal ground the neural operation of comparison 
between corollary discharge and sensory feedback 
is equivalent to the deviation from expectation!'>.VA 
as derived in the delta rule in classical condition­
ing (see Box 28. I), and!'>.VA can be considered to be 
equivalent to a neural error signal. 

The corollary discharge (efference copy) was 
postulated already by Helmholtz (1821-1894) and 
has been conceptualized to be forwarded from 
the motor system to the sensory system providing 
inhibitory input to the incoming sensory signals. 
However, it has been difficult to identify such neu­
ral pathways. A single muItisegmental interneuron 
(Fig. 28.3, corollary discharge interneuron CD!) 
was found in the cricket which provides presynap­
tic inhibition to auditory afferents and postsynaptic 
inhibition to auditory interneurons when the animal 
prodlices its own song but not when it hears songs 
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from other animals. When the animal sings without sensory input expected to be received from own song
sound (fictive song) CDI is excited and inhibits the production. It will be interesting to see whether a 
coding of played songs. The authors [19] managed mismatch between the expected song pattern and the 
to stimulate CDI intracellularly, resulting in inhib­

received song produces an error signal that may be 
ited auditory encoding. They also found that excita­ used to fine-tune own song production, e.g., after 
tion of CD! is specific for self-generated songs and some disturbance of the song production by the 
not for other motor patterns, demonstrating that CDI wings.
 
is both necessary and sufficient for the blocking of
 

The concept of an error signal driving associative 

learning has also a strong impact on neural studies of 

learning related plasticity in the nervous system. Thea b 
dopamine neurons of the ventral tegmentum of the 

mammalian brain, for example, change their response 

properties to the CS according to a modified delta rule 

[22]. A similar effect was found in an identified neuronrd~) :/.l~ 
in the honeybee brain [9]. This neuron known as 

VUMmxl (ventral unpaired median neuron I in theSOG! ) £~ (JLJ	 \.- ~ maxillary neuromere) codes for the reinforcing prop­

erty of the US sucrose in olfactory learning, and thus\~n'/ v'-'f~'Y appears to have similar properties as the dopamine 

neurons in the mammalian brain. As Fig. 28.4 shows, 

VUMmxl changes its response properties in the courseprJ~~ 
7\ 

~ nl C 
of learning as do the dopamine neurons in primates 

~ ~ (~~~V,~ (Fig. 28.5). During differential conditioning VUMmxl 

~n(~J '[ develops responses to the CS+ and stops responding to 

..my~l..- ~n( 
eJC ~ U lv	 Fig.28.3 Morphology of a single, multisegmental interneu­

ron responsible for pre- and postsynaptic inhibition of auditory ~n(J L neurons in the singing cricket (Gryllus bimaculatus) represent­
ing a corolJary discharge neuron (COl). (a) A whole-mount 
staining of the COl in the CNS of an adult male cricket in ventralmei~.).	 [~\ J 
view. The soma and dendrites are located in the mesothoracic) . .( 
ganglion, and two axons project throughout the whole CNS with 

~\y ( ~ /\\ extensive varicose arborizations that are bilateral in every gan­
glion except the brain. The arrow in brain indicates the anterior 
branch of COl. (b) Axonal arborizations in the prothoracic gan­j~\ "I n LAbl	 glion; arrows indicate overlap with the auditory neuropils. (c)
 
Lateral view of COl in mesothoracic ganglion. The SOma is posi­
,~)~ f ~ U ~	 tioned medially near the dorsolateral edge of the ganglion. From 
the soma the primary neurite extends in a loop toward the middle 
of the ganglion and gives off a widespread bilateral array of 
smooth branches typical of insect dendrites. Two axons origi­
nate centrally in the ganglion and extend both anteriorly and 
posteriorly. (d) Ventral axonal arllorizations in the mesothoracic.. (~~ ), ' (	 ganglion. (e) Dendritic (dorsal) and axonal (ventral) arboriza­
tions of COl in the mesothoracic ganglion. (0 Axonal arboriza­
tions of COl in the metathoracic ganglion have a similat 

TAb	 morphology to those in the mesothoracic ganglion. Abbreviations: 

'" )~~ my, \ 

)J\ \, ~ /' 
SOG subesophageal ganglion, Pro prothoracic ganglion, Meso 
mesothoracic ganglion, Meta metathoracic ganglion, AbJ to Ab4 
abdominal ganglia 1-4, TAb terminal abdominal ganglion. Scale j~\_ 1nL 
bars: 100 lim (After [19] with permission from AAAS) 
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CSc' If now the US is given after the CS+ one finds no 

responses to the US anymore, but a US after CS- is 

well responded to. Thus, an expected US (after CS+) 

is ineffective, whereas an unexpected US (after CS-) 

is highly effective. The delta rule and the concept of 

comparison between corollary discharge and sensory 

feedback postulate that learning occurs only if /',. \j, >0. 

In classical conditioning these properties were related 

to blocking and second-order conditioning (see Box 

28.1 and Table 28.2). In operant conditioning no learn­

ing occurs when the error signal is zero. It is conceiv­

able that the acquired responses of the value nemons 

(the activity of dopamine neurons or of VUMrnxl) 

implement the neural error signal and act as neural 

d 
during training 

J .,•••, HI .,ItNt~learninltriall I/!.. {II.III! 

LUtilJLI!JU -L.JJJLwJUlL 
(S;"tus cs:­

Fig.28.4 Properties of a single identified neuron (VUMm:d, 
ventral unpaired median neuron I of the maxillary neuromere) 
in the bee brain that represents the reward in olfactory learn­
ing. (a) The honeybee brain. The olfactory neuropils are 
marked in blue, the antennal lobe (AL), the lip region of the 
mushroom body, the lateral protocerebrum (LP). The tracts of 
olfactory interneurons (olf. neurons) connect the AL with the 
lip and the lateral protocerebrum. (b) The VUMmx I. Dendritic 
branches converging with the olfactory neuropils are marked in 
blue. The soma of VUMmxl is located in the ventral midline 
of the subesophageal ganglion (SOG). (e) Intracellular stimu­
lation of the VUMmx I replaces the sucrose reward in olfactory 
conditioning. Before conditioning, the low level of potentials 
in a muscle involved in the extension of the proboscis (ordi­

reinforcement. However, it has not yet been proven 

that the neural error signals resulting from a mismatch 

between the corollary discharge and the sensory feed­
back really drive the internal value system. 

ba 

28.4	 Nonelemental Forms of Associative 
Learning 

28.4.1	 Definition and Standard Paradigms 

Nonelemental forms of learning were developed to 

reach a more detailed analysis of learning. Here, the 

associative strength of a stimulus, event, or action is 
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nate) indicates that the animals did not respond to the odor. 
After conditioning, the responses are high in animals experi­
encing forward pairing of odor and VUMmx I excitation f but 
did not change after backward-pairing b. (d) VUMmx 1 learns 
about the CS. In differential conditioning the response increases 
for CS+ and decreases for CS-. Note that a CS+ trial includes 
the stimulation with US (sucrose) to which VUMmx I shows a 
strong response. (e) Tests after differential conditioning show 
an enhanced response to CS+ and a reduced response to CS-. 
If an expected US follows CS+ the US response is blocked, 
whereas an unexpected US after CS- is strongly responded to 
(After [9] with permission from Macmillan Publishers Ltd.: 
[Nature], © (1993) and [17], © (2001), with permission from 
Elsevier) 
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Fig. 28.5 The reward system in the mammalian brain. 
Recordings from dopamine neurons of the ventral tegmentum 
during reward learning in a monkey [23J. Top: Before learning, 
a drop of appetitive fruit juice occurs in the absence of predic­
tion - hence a positive error in the prediction of reward. The 
dopamine neuron is activated by this unpredicted occurrence of 
juice. Middle: After learning, the conditioned stimulus predicts 
reward. and the reward OCCurs according to the prediction _ 
hence no error in the prediction of reward is seen. The dopamine 
neuron is activated by the reward-predicting stimulus but fails 
to be activated by the predicted reward. Bonom: After learn­
ing, the conditioned stimulus predicts a reward, but the reward 
fails to occur because of a mistake in the behavioral response of 
the monkey. The activity of the dopamine neuron is depressed 
exactly at the time when the reward would have occurred. The 
depression occurs more than 1 s after the conditioned stimulus 
without any intervening stimuli, revealing an internal represen­
tation of the time of the predicted reward. Each panel shows the 
time histogram and raster of impulses from the same neuron CS 
conditioned reward-predicting stimulus 

ambiguous and therefore cannot predict obvious ways 
of solving a problem. For example: Stimulus A is 
rewarded as often as not rewarded, but it is rewarded 
whenever it is presented together with a different 
stimulus B, whereas it is nonrewarded when presented 
together with a third stimulus C (AB+ vs. AC-, + indi­
cating reward, - no reward). The animal cannot rely 
on the pure associative strength of A, but must include 
the context B or C. 

Standard paradigms for nonelemental learning 
include: negative patterning (A+, B+, AB-), bicon­
ditional discrimination (AB+, CD+, AC-, BD-), and 
feature-neutral discrimination (B+, AC+, C-, AB-). In 
all of these, each stimulus appears rewarded a~ often 
as not. In negative patterning the animal learns to 
respond to the single stimuli A and B but not to their 

compound AB. This problem does not admit elemental 
solutions, since the animals learn that AB has to be 
different from the linear sum of A and B. In bicondi­
tional discrimination, the animal learns to respond to 
the compounds AB and CD and not to the compounds 
AC and BD. Each element A, B, C, or D, appears 
rewarded as often as not such that it is impossible to 
rely on the associative strength of a given stimulus to 
solve the task. In feature-neutral discrimination, the 
animal learns to respond to B and to the compound AC 
but not to C and the compound AB. In this case, each 
element is again ambiguous such that the animal learns 
the predictive value of the compounds AB and AC, 
independent of their composing elements. Other less 
formalized paradigms are contextual learning and rule 
learning (see below). The more formalized problems 
appear to be closer to neural interpretations, and have 
been assigned to cortical and hippocampal circuits in 
mammals a~ opposed to elemental forms of associative 
learning which may not require these circuits. 

Two behavioral theories have been proposed for 
explaining negative patterning and biconditional dis­
crimination: the configuraI theory, which proposes 
that a compound AB creates an entity different from 
its components (AB=X>,A+B), and the unique-cue 
theory, which proposes that a compound is processed 
as the sum of its components plus a stimulus (u) that is 
unique to the joint presentation of the elements in the 
mixture (AB = A + B + u). In the latter case, the unique 
cue supports an inhibitory strength assigned to the 
compound. 

Free-flying honeybees and fixed bees conditioned 
to olfactory stimuli with sucrose reward (see Fig. 28.1) 
solve a biconditional discrimination (AB+, CD+, AC-, 
BD-) and negative patterning task (A+, B+, AB-). 
Thus, bees base their discrimination on separate neu­
raJ processing of the compound AB. It is argued that 
a high-order integration center of the insect brain, the 
mushroom body (see Chap. 13) is involved. The data are 
in line with the unique cue theory, and it is concluded 
that the unique cue is created by convergent neural 
pathways in the mushroom body. Lobsters placed in an 
aquarium learn to avoid an olfactory stimulus delivere1 
in water with a mechanosensory disturbance. When they 
are trained to an olfactory compound AX lobsters stop 
searching AX but still search when presented A alone, 
X alone, or a novel odor Y. Similarly, a novel compound 
AY does not inhibit searching behavior. This result is 
consistent with leaming the compound AX as an entity 
different from its components A and X. 
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28.4.2 Selective Attention, Discrimination, 
and Generalization 

Animals attend to stimuli depending on their motiva­
tions and needs. Hungry animals are more sensitive 
to food-related stimuli, sexually motivated animals to 
sexual stimuli coming from a potential partner, fright­
ened animals to stimuli that signal protection and shel­
ter. Selective attention consists in the ability to focus 
perceptually on a particular stimulus and to ignore 
nonrelevant stimuli. It implies that the representation 
of the stimulus has been filtered or modified, pr~um­
ably so that it can be processed or responded to more 
efficiently. Ethologists illustrate selective attention 
with "search images" (innate or learned perceptual 
mechanisms that promote the behavior 'in question), 
sensory physiologists point out that selective attention 
leads to higher sensitivity and more accuracy in per­
ceiving attended stimuli, and learning theorists notice 
that selective attention can be induced and modified 
by particular procedures of training. We are dealing 
here with the latter. Discriminative learning is the 
traditional approach. The animal gradually learns to 
attend a discriminative stimulus. For example, a rab­
bit is trained in an eye blink paradigm to respond to a 
sound of 1,200 Hz (Fig. 28.6a). In one situation (Tl) 
only the 1,200 Hz pulse appears shortly before the 
air puff against the eye (absolute training), in a dif­
ferent situation (Tl-1'2) a sound of 2,400 Hz (1'2) is 
intermixed with Tl and is not followed by an air puff 
(differential training), in a third situation (Tl-L) a 
light bulb is switched on which is also not followed by 
an air puff (differential training with another modal­
ity). Sound discrimination is best after differential 
training, but the light stimulus leads also to better 
sound discrimination. The attention-inducing effect 
of a stimulus of other modality can be very strong 
(Fig. 28.6b). A pigeon learns to peck an illumined key 
when a sound S+ of the frequency 1,000 Hz appears 
(upper curve: frequency discrimination is very low). 
If the illumination of the key is switched on and off 
from time to time without the sound but food pellets 
appear only when both the sound rings and the key 
light is on, sound frequency discrimination is much 
better (lower function). A discriminative signal of the 
same modality can also shift stimulus discrimination. 
Figure 28.6c shows the result of training a horse to a 
circle of 60 mm diameter (S+) who had to discrimi­
nate it from circles with smaller or larger diameters. 
The generalization profile for different diameters of 

circles was rather symmetricaL When the same horse 
was exposed to differential training with a 38-mm 
circle, the generalization function was quite asym­
metrical shifting best discrimination to even larger 
circles than S+. These experiments document that 
animals generalize less after differential condition­
ing, probably because excitatory and inhibitory learn­
ing interact (see above). Furthermore, generalization 
decreases when the animal is more attentive to the 
stimulus. 

Attention also changes in long series o~ training as 
indicated in a rather paradoxical but well-documented 
phenomenon, overtraining reversal effect. In such a 
situation animals are trained to, e.g., dual choice dis­
crimination (S 1+, S2-); then the schedule is reversed 
(SI-, S2+). Animals are found to be more prepared 
to reyersal after longer training. It is argued that over­
training leads to a loss of attention, and the reversal 
makes the animals attentive again by the surprise effect. 
This interpretation postulates that the animal develops 
an expectation about the outcome of their (trained) 
behavior. Evidence for this interpretation comes from 
experiments in which two stimulus conditions were 
trained, one (S I) associated with a particular reward 
(dry food), another one (S2) with water. When the ani­
mals were made either thirsty or hungry and exposed 
to both S I and S2 they chose S2 when thirsty and S I 
when hungry (differential outcome effects). 

Do insects have selective attention? Drosophila 
flying stationary in a circular arena switch their 
visual tracking between two vertical bars thus dem­
onstrating selection of two possible targets. Local 
field potentials recorded in the central brain (possi­
bly originating in the mushroom bodies) show that 
activity in the 20-30 Hz range increases as a response 
to selecting a bar. The local field potentials increase 
with the novelty and the salience of the stimuli, are 
anticipatory and are reduced when the fly is in a 
sleep-like state. These results suggest that selective 
attention underlies visual tracking in flies. Honeybees 
discriminate colors and patterns depending on the 
kind of training (absolute, differential). Overtraining 
leads to better reversal learning as it does in mam­
mals. Honeybees learn different stimulus-reward 
associations for different contexts indicating that they 
pay attention to context-relevant stimuli. However, 
the effects of attention-inducing stimuli on discrimi­
nation learning and generalization as well as differen­
tial outcome effects were not systematically tested in 
any invertebrate yet. 
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28.4.3 Rule Learning, Rational 
Reasoning, and Insight 

underlying rule. 

A rather simple problem for rule-learning is 
delayed matching to sample or non-sample 
(DMTS, DMTNS). In such a problem the animal has 
to choose (or to not choose) the target which resem­
bles the one it was exposed to just before. Successful 
extraction of the rule implies that the animal performs 
correctly to novel stimuli. Imagine a honeybee is 

2000	 trained to fly into a maze in which she has to make a 
decision to enter one or the other of two arms that are 
arranged like a Y (therefore this arrangement is called 
a Y-maze). The bee learns to choose the visual targets 
(colors, patterns) at the end of each arm depending 
on what it has seen when entering the maze. DMTS 
and DMTNS tasks are well learned by the bee under 
such conditions, and the bee transfers the rule to a 
novel task. For example, if she had learned to fly to 
the blue target when blue was seen at the entrance, 
and to the yellow target when yellow was seen, the 
bee transfers this rule to a novel visual task: if she is 
exposed for the first time to two patterns of vertical or 

• 
Fig.28.6 Discrimination and generalization. (a) The eyeblink 
response ofrabbits was trained to a tone ofa frequency of 1,200 Hz 
either alone (Tl, absolute training) ordifferentially to two tones, T1 
(CS+: 1,200 Hz) forward-paired, 1'2 (CS-: 2,400 Hz) backward­
paired, or to a tone T1 (CS+: 1,200 Hz) forward-paired and a light 
stimulus (CS-: L) backward-paired. Notice that the generalization 
gradient is narrower after differential conditioning even if CS- is 
of a different modality. (b) Differential conditioning leads to sharp 
generalization functions. Pigeons were trained to peck a key when 
a tone of 1,000 Hz was presented. In the case of absolute train­
ing, pigeons generalized to tones of all frequencies tested, after 
differential training, the generalization gradient becomes sharp and 
centered around the trained tone of 1,000 Hz. (c) Differential oper­
ant conditioning can lead to a peak shift of generalization. Initially 
a horse was rewarded for pressing a bar in a 6O-rnm-diameter circle 
after 60 s. Testing different circles of different diameters (abscissa) 
shows a symmetrical generalization function centering around 
the trained stimulus (open cin.:les. single stimulus). Afterwards a 
CS- of 38 rnm diameter was introduced and again different diam­
eters were tested (filled cin.:les, discrimination). The generalization 
function shifts to larger diameters (After [I4J, © (2008), with per­
mission from Elsevier) 
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horizontal stripes she will apply the same rule. She 
even transfers the rule from learned visual targets to 
an olfactory task [8]. In mammals it was found that 
extended delays between the signals to be compared 
in DMTS and DMTNS requires the hippocampus. A 
more complicated problem is transitive inference. 
In this problem, animals have to learn a transitivity 
rule, i.e., if A>B and B>C, then A>C. Preference 
for A over C in this context can be explained by two 
strategies: either a form of deductive reasoning in 
which the experimental subjects construct and manip­
ulate a unitary and linear representation of the implicit 
hierarchy A> B > C; or a form of associative respond­
ing as a function of reinforced and not reinforced 
experiences, in which case animals choose among 
stimuli based on their associative strength. The latter 
explanation can be ruled out by careful experimental 
design, e.g., by training an animal to five different 
visual stimuli A, B, C, D, and E in a mUltiple dis­
crimination task A+ vs. B-, B+ vs. C-, C+ vs. D-, 
D+ vs. E-. Such training involves overlapping of 
adjacent premise pairs (A>B, B>C, C>D, D>E), 
which underlie a linear hierarchy A> B > C > D > E. 
After training, animals are tested with B vs. D, a non­
adjacent pair of stimuli that was never explicitly 
trained. In theory, Band D have equivalent associa­
tive strengths because they were associated with 
reinforcement or absence of it equally often. Thus, 
if the choice of the animal is guided by the stimulus' 
associative strength, it should choose randomly 
between Band D. If, however, it applies a transitiv­
ity rule, it should prefer B over D. Many mammals 
extract the transitivity rule, honeybees appear not to 
learn it. 

28.4.3.2 Occasion Setting 
The so-called occasion setting problem requires also 
the extraction of a rule although nonelemental forms 
of associations may be sufficient. In this problem, a 
given stimulus, the occasion setter, informs the animal 
about the task. This basic form of conditional learning 
admits different variants depending on the number of 
occasion setters and discriminations involved, which 
have received different names. An example involving 
two occasion setters is the so-called transwitching 
problem. In this problem, an animal is trained differ­
entially with two stimuli, A and B, and with two differ­
ent occasion setters CI and C2. With C1 stimulus A is 
rewarded while stimulus B is not (A+ vs. B-), with C2 

it is the opposite (A- vs. B+). Focusing on the ele­
ments alone does not allow solving the problem as 
each element (A, B) appears equally as rewarded and 
nonrewarded. Each occasion setter (Cl, C2) is also 
rewarded and nonrewarded, depending on its occur­
rence with A or B. Animals have therefore to learn that 
Cl and C2 define the valid contingency. The tran­
switching problem is considered a form of contextual 
learning because the occasion setters C1 and C2 can be 
viewed as contexts determining the appropriateness of 
each choice. Note that biconditional qiscrimination 
(AB+, CD+, BC-, AD-see above) is also a transwitch­
ing problem, and thus an occasion setting problem, if 
one considers A and C as occasion setters for Band D 
(i.e., given A, B+ vs. D-, and given C, B- vs. D+). All 
of these problems are forms of conditional learning in 
w~ich a stimulus can have different associates depend­
ing on the conditions in which it is presented. 

28.4.3.3 Categorization 
When animals categorize objects, they apply both the 
rule of similarity and of difference. Some objects are 
treated as belonging to the same category, and others 
to a different category. Pigeons learn hundreds of pic­
tures of natural objects and categorize them differently 
(houses, humans, flowers, cars, etc). When exposed 
to new exemplars they group them accordingly. 
Honeybees can extract the feature as symmetrical vs. 
asymmetrical from multiple inst;mces and transfer this 
categorization to new exemplars. Both pigeons and 
honeybees learn a reversal of their behavior to the cat­
egory much faster than establishing the rule at the very 
first instance. 

In all these experiments it is crucial to control that 
some low-level feature (e.g., overall brightness or 
color, overall spatial frequency distribution, a common 
particular key feature) may not explain the behavioral 
categorization effect. Even so, it is not clear what it 
means that animals categorize objects. Do they create 
an abstract concept of a category as humans do, e.g., 
that of symmetry, of houses, of trees? Since little is 
known about the neural correlates of such concepts, 
the question cannot yet be answered. Possibly there is 
one exception - the concept of number. 

28.4.3.4 Counting
 
Can' animals count? One of the difficulties in answer­

ing this question lies in the enormous variety of behav­

iors that can be controlled by numerical attributes of
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stimuli. An organism may be trained to select the larger 
(or the smaller) of two arrays of items, with the experi­
menter controlling the non-numerical attributes of the 
stimuli (e.g., area or density), so that only the number 
of items in the array can reliably predict reinforce­
ment. The concept of number is abstract and should 
allow the animal to transfer across different sensory 
modalities and across different test procedures. True 
counting requires the presence of cardinality, the one­
to-one assignment of a numerical tag to an array, and 
the presence of ordinality, the ability to order these 
numerical tags. Furthermore, the animal needs to be 
able to transfer to new numbers. For example, a rat 
trained to press a lever twice after two light flashes 
and four times after four light flashes ought to be able 
to spontaneously press a lever three times after three 
light flashes with no additional training. This strict 
definition of counting has been met in very few experi­
ments. Rats were trained to press the right lever when 
two sounds were presented and to press the left lever 
when four sounds were presented. The non-numerical 
features of the stimuli - such as the duration of each 
sound, the interval between sounds, and the total dura­
tion of the sound sequence - was controlled so that 
a reliable discrimination could be based only on the 
number of the sounds in a sequence. After rats learned 
this discrimination, the sounds were replaced by light 
flashes. The rats followed the previously learned 
rule. In several cases the transfer between items has 
been well documented, e.g., in ravens, a gray parrot, 
monkeys, and apes. The chimpanzee Ai was found to 
be able to perform a three-unit ordering task which 
included different behaviors depending on whether a 
higher or a lower algebraic number (up to three) was 
expected. It thus seems clear that primates and birds 
can think in at least simple terms about how many 
objects they perceive. Thinking about numbers in ani­
mals may seem to be a matter that would seldom have 
been useful enough in the past for natural selection 
to have favored it. Yet when it becomes important to 
think in this way in order to get food, ravens and few 
other birds, as well as rats, monkeys, and apes learn to 
do so, apparently employing a general ability to learn 
simple concepts. 

A less strict definition of counting includes the 
capacity of animals to judge about the approximate 
number of items (numerosity) and the sequential 
experience of items in navigation (precounting). 

Discrimination between numbers of items up to 
seven is well documented in birds and mammals, 
but less well in insects. Sequentially experienced 
signals have numerical attributes, and animals may 
use this for navigation (see below). Bees trained to 
fly in a tunnel experienced up to four visual signals 
at varying distances. The feeding place was located 
at a constant relative position with respect to the 
sequential signals. In a test situation bees searched 
accurately between the first and second signal if 
trained to such a relative position, less accurately 
between the second and third position when trained 
to that position, and behaved randomly when 
trained to the position between the third and fourth 
position. This result indicates that bees might be 
capable of some form of precounting up to a num­
ber of three. 

28.4.3.5 Causal Reasoning 
Do animals understand that their actions lead to partic­
ular consequences? Causal reasoning in the strict sense 
has been considered as a key cognitive faculty that 
divides humans from animals. Animals accordingly 
have been thought to approximate causal learning by 
associative processes. It has been difficult to ask 
whether animals understand that their actions cause an 
outcome rather than just learning about the correlation 
between stimuli, actions, and outcome. Figure 28.7 
describes a series of experiments showing that rats have 
a much deeper understanding of the causal nature of 
their actions. One group of rats observed that presenta­
tions of a light (L) was followed by a tone (T) and by 
food (F). In an operant conditioning paradigm they then 
learned to expect food after pressing a lever that causes 
a tone. Another group of animals learned that food is 
predicted by a noisy tone N indicating a direct cause of 
N for food. If animals of group one caused the 
appearance of the tone T (intervening situation) they 
searched less for food than animals of group 2 after they 
caused N. Obviously, causing the tone by their own 
action led to a different expectation of the outcome in 
the first group than causing the tone in the second group. 
The kind of ''thought'' about the physical world which 
the animal may have implicitly applied could be: "I did 
not cause the tone, therefore the light must be predictive, 
and thus I expect food" (for the observing situation). For 
the intervening situation it could be: "I caused the tone, 
therefore there should be no light, and thus I do not 
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expect food". Obviously the rats derived predictions of 
the outcomes of interventions after passive observa­
tionallearning. These competences cannot be explained 
by associative theories and require the assumption that 
rats are capable of causal reasoning [3]. 

28.4.3.6 Insight 
Selecting and constructing tools is frequently seen 
in animals ranging from rather stereotypical and 
innately programmed behavior (as e.g., in weaver 
ants that use their larvae for knitting together bent 
leaves to construct a nest) to highly flexibll: and 
learned behavior (such as tool use in primates). 
Animals manipulate material giving the impression 
that they have an insight into the physical conditions 
of the world. Ravens spontaneously pull a string with 
a piece of meat at its end upwards by stepwise catch­
ing the string with the pick, lifting it, and stepping 
on the string with one leg (Fig. 28.8b). The most 
compelling evidence for the understanding of causal 
properties of physical objects comes from corvids. 
A New Caledonian crow spontaneously bent a piece 
of ineffective straight wire into an effective hook tool 
for retrieving food (Fig. 28.8a) [2]. 

28.4.3.7	 Individual Recognition
 
and Self-Recognition
 

A cognitive component of self may be related to indi­
viduality as recognized by others and by the animal 
itself. Cricket males perform rivalry songs, defend 
their territories, and fight against each other. Winners 
and losers appear to learn to recognize each other on an 
individual basis. The yellow-black patterns of the faces 
and the abdomen of the paper wasp Po/istes fuscatus 
vary considerably, making it possible that individual 
animals in these small colonies might recognize each 
other. Altering these facial and/or abdominal color 
patterns induces aggression against such animals, irre­
spective of whether their patterns were made to signal 
higher or lower ranking, arguing that this altered aggres­
siveness indicates individual recognition [241­

Queens of small ant colonies (Fonnica fusca) are 
individually recognized by their offspring [6], but how 
about the workers of insect societies? Insect societies 
are highly structured in groups of animals performing 
particular behavior (brood care, cleaning, defense, for­
aging). Members of some of these groups may differ in 
body morphology (e.g., soldier ants) and stay with the 
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Fig. 28.7 Causal reasoning in rats. (a) Top: Group one expe­
rienced L (light) as a predictor ofT (tone) and F (food). In group 
two a noisy tone N predicted F (observing situation). Bottom: 
Later, in an intervening situation animals of group one could 
elicit T and those of group 2 could elicit N by pressing a bar 
(arrow to T and N). If the animals had learned the logic relations 
between light (L), tone (T) and food (F) (group one) or between 
noise (N) and food (F) (group two) the two groups should behave 
differently in an intervening situation because eliciting T alone 
by animals of group one should not lead them to expect F. (b) 
Experimental results. Mean licking behavior was used to mea­
sure expected food reward~. Animals of group one expect the 
food significantly less often than those of group two (Modified 
from [3] with pennission from AAAS) 

group for their entire life, other group assignments are 
age dependent and highly adaptive to the colony needs 
(as is the case in a honeybee colony). Stable or temporal 
group membership is mutually recognized most likely 
by odor profiles. E.O. Wilson states on the final page of 
'The Insect Societies" (1971): 'The insect societies are, 
for the most part, impersonal. The small, relatively 
primitive colonies of bumble bees and Polistes wasps 
are based on dominance hierarchies, and individuals 
appear to recognize one another to a limited extent. In 
other kinds of social insects, however, personalized rela­
tionships play little or no role. The sheer size of the 
colonies and the short life of the members make it 
inefficient, if not impossible, to establish individual 
bonds." However, the sheer unlimited capacity of 
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Fig.28.8 Two examples or 
Insight in birds. (a) The 
Caledonian crow bends a wire 
to a hook such that it can be 
used to pull up a container 
with food deposited in a 
transparent container. The 
hooks produced by four 
different birds are shown on 
the right side (After [21 
© (2009), National Academy 
of Sciences, U.S.A., with 
permission). (b) A raven pulls 
up a piece of meat hanging on 
a string. The behavior is not 
learned but performed at once 
after the bird has inspected the 
situation from the distance. 
Pulling procedure requires 
sequences of catching the 
string with the beak, pulling it 
up, and stepping on it (After 
(12], with permission) 

insects to discriminate odors (see Chap. 13) provides 
the potential for discrimination of a very large number 
of group constellations, potentially even to the level of 
individual recognition. 

Does an animal know about itself? Self recogni­
tion in animals involves at least four different levels: 
intentionality, individual recognition in a social con­
text, response to a mirror image of the own body, and 
episodic-like memory. Operant learning includes an 
intentional component: self-generated behavior creates 
an expectation via a parallel pathway (efference copy) 
which allows the distinction between self-produced 
causal events and environmental events (intentional 
aspect of behavior). One may even assume that the 
internal representation of actions (efference copy) 
developed in evolution for self-nonself discrimination. 
The identification of the nervous system with its body 
is probably the most basic component of this distinc­
tion. Thus, any animal can be considered as an agent 
that causes things to happen and recognize these things 
as caused by itself. Operant behavior is, furthermore, 

goal directed. The self-generated causes will eventu­
ally be more favorable to the animal than the envi­
ronmental causes. At this level of argumentation any 
animal will experience "self' as different from "non­
self'. Such a body-self could be considered to indicate 
a low level of cognition. 

Feeling pain may be taken as an indication of 
body-self experience. Do invertebrates experience 
pain, a form of self-recognition that includes an emo­
tional and a warning component that points to the 
future (see Chap. 21)? Locusts and crabs cast off body 
appendages when attacked. Do they experience differ­
ent forms of sensory input when they perform these 
actions themselves or when the same appendages are 
removed? When honeybees lose their stinger the abd}l­
men is damaged so much that the animal will die. It has 
been observed that alarm pheromone, which usually 
triggers an attack flight, induces stress analgesia via 
an opioid system in the honeybee,potentially indicat­
ing that a preparatory response of the nervous system 
leads to a reduction of the strong sensory input from 
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the body distraction. Opioids, which are usually asso­
ciated with stress-induced analgesia, have been found 
in other invertebrates such as crickets and the praying 
mantis, thus suggesting that their presence may serve 
to counteract the effect of nociceptive stimuli as in 

vertebrates. 
A common test of self-recognition uses a mirror. 

Octopus react aggressively to both the own mirror 
image and a conspecific making it unlikely that they 
recognize themselves (but they may well be recog­
nized by others as an individual). Primates and some 
birds pass the mirror test. A magpie spontaneously 
tries to clean a white paint mark on its head when 
detecting its mirror image [20). Based on the different 
evolutionary history of the bird and primate brain, it is 
argued that the neural mechanisms of self-recognition 
in these two groups of animals are convergent traits. 
Practically nothing is known about their neural basis. 

Humans remember episodes of the past, recollect 
them consciously, and relate them to their own memory 
in space and time (episodic or autobiographic mem­
ory also called autonoetic consciousness). Operant 
learning provides continuous information about the 
self-induced causes and distinguishes them from envi­
ronmental causes (see above). This allows the animal 
to test whether its expectations about the physics of 
the world are met, a form of exploring the world. 
Because the relevant conditions of the world change 
with the changing requirements of the own body, the 
distinction between self-related memory and memory 
about environmental conditions is highly important. It 
allows to store the own needs and desires together with 
the actions leading to their satisfaction, which is, in 
essence, an episodic memory. Since we do not know 
the conscious state of the animal, such memories have 
been called episodic.like. Episodic-like memory pro­
vides the strongest hint of self-recognition in animals 
because they include the experience that "I can control 
the world by my actions". It is this cognitive 'T' which 
defines the self much more than own body recognition 

in the mirror test. 

28.4.4 Learning by Observation 

28.4.4.1 What Is Observation?
 
Animals improve their perceptual and motor perfor­

mances and develop new behaviors by observation.
 
Imprinting and many forms of social learning (imita­

tion, acoustic and visual communication, traditions) 
are based on observation without obvious external 
reinforcing stimuli rather than on associative learning. 
How do animals know when and what to learn? Most 
likely several neural mechanisms are involved given 
the large range and conditions under which observa­
tion learning occurs. A rather low-level mechanism 
has been mentioned· already above in the context of 
improvement of motor performance by an error signal. 
It is possible that in a way akin to motor learning (see 
above, Fig. 28.2b), an internal value coding pathway 
is generated. In this case, observation I~arning could 
function mechanistically in a way similar to associa­
tive learning, if the conditions under which it happens 
activate an internal value system. In imprinting, this 
could be just the innate program of a sign stimulus. 
The emotions involved in the social context could form 
such a value system. In other conditions, e.g., explo­
ration in space, tool manipulation, and play, selective 
attention could be the source for the activation of a 
value system - however,little is known about the neural 
mechanisms. The apparent lack of an obvious external 
value signal may also result from the replacement of 
a primary reinforcing stimulus by a learned (second­
order) reinforcing stimulus. For example, the positive 
feeling of social coherence could result from primary 
rewarding signals (feeding, care taking) in the context 
of social embedding. Learning in the social context 
may then be second-order associative conditioning. 

These arguments support the notion that the mecha­
nisms of observation learning are of associative nature. 
Although multiple observations indicate an activation 
of modulatory systems under conditions of enhanced 
and directed attention as it happens during exploration, 
social communication, and playful tool manipulation, 
it cannot be excluded that observation learning may 
also involve nonassociative mechanisms possibly 
based on the sheer sequence of events. 

28.4.4.2 Navigation 
Animals and humans know where they are and where 
they are going next. The question is, how do they know 
and what does "knowing" actually mean? In migrating 
animals (insects, fish, turtles, birds, mammals) long­
distance vectors are innately determined. Learning the 
route may playa role in cases of multiple migrations of 
the'same individual but is not a requirement for suc­
cessful migration. Median-range navigation involves 
multiple starts and returns from and to a central point, 
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e.g., a nesting site. Learning is an essential strategy 
under these conditions. We humans experience our 
ability to orient and navigate in space and time as a set 
of functions to which we can relate our attention sepa­
rately and specifically. We identify an object, take a 
bearing, and approach it when we sense it from a dis­
tance. When planning a route we retrieve from mem­
ory a sequence ofviews, and coordinate ournavigational 
task accordingly. Our introspection of a mental map is 
experienced as a type of frame for localizing ourselves 
and the geometric relations of objects. This mental 
map corresponds to some degree to the physical map 
that results from measurements of distances and angles 
or from a bird's-eye view [25]. At the same time we 
have the ability to communicate locations, how to 
reach them, and what to expect from them. 

Obviously, navigation involves multiple perceptual 
and computational mechanisms at peripheral and cen­
trallevels of neural integration. Objects are identified, 
picture memories (not only in the visual domain) and 
their sequences are formed, motor performances along 
traveled routes are learned relative to the own body 
(egocentric navigation) and to the spatial relations 
to and between objects (allocentric navigation). All 
of these multiple cognitive faculties may be partially 
integrated into a coherent spatial representation, a cog­
nitive (or mental) map. Studies in humans and animals 
tell us that cognitive maps are not the only possible 
reference system - for example, path integration or 
picture memories may be used instead or in addition. 

Path integration (Fig. 28.9a) requires the compu­
tation of the rotatory and translatory components of 
movement. Body rotation can be measured with respect 
to external information (e.g., sun compass, far distant 
cues) or to internal information (kinestetics, e.g., by 
vestibular system, movements of body parts, see Chap. 
16). The translatory component requires an odometer 
(distance measure) that may gain its information visu­
ally (as in flying insects by visual flow) or from some 
form of step counting (as shown in ants). The neural 
mechanisms of path integration are unknown. In mam­
mals, modeling studies suggest that the path integrator 
resides in the entorhinal cortex integrating the signals 
from spatially tuned principle cells (grid cells) and that 
of head direction cells, which then is communicated to 
the hippocampus forming the properties of the place 
cells [5, 16] (Fig. 28.10). Head direction cells, grid 
cells, and place cells provide the animal with informa­
tion about its location relative to local and further dis­

tant landmarks. Place cells in particular code not only 
spatial relations but also local cues like the odor and 
the sequence of experiences made along the way 
towards the location. Spatial coding in the hippocam­
pus resides in multiple spatial representations (neural 
maps) and is highly dynamic. Spatial coding changes 
(is remapped) when the geometry of the environment 
changes. These properties make it likely that the mul­
tiple and adaptive neural maps in the hippocampus 
provide the substrate of a cognitive map (see below). 

Path integration allows the animal to return to the point 
of origin along a straight path. The precision of the 
inbound path decreases with the length of curved out­
bound path because of error accumulation in the integra­
tion process. Path integration is an egocentric mechanism 
as long as the animal does not leam anything about the 
spatial relations ofthe objects experienced during inbound 
and outbound movements. If it does (this is the case, e.g., 
in the honeybee and most likely in other animals), then it 
is a component of an allocentric mechanism. 

<rllal-directed vectors (Fig. 28.9b): Animals steer 
towards goals without access to any signals emanating 
from the goal. This is evident in migratory movements, 
but occurs also in close range navigation. In that case, 
vector information relative to a compass (Sun, Moon, 
stars, Earth magnetic field, steady winds, far distant 
cues) and an odometer is derived from former learning 
(e.g., the straight return path in path integration, or in 
the case of the honeybee the vector communicated in 
the waggle dance). Vectors provide sufficient informa­
tion for reaching a goal but also for communicating 
goals among individuals if the angular and distance 
components are related to commonly agreed refer­
ences. The honeybees' waggle dance is such a case. 
Frequently used routes along memorized vectors lead 
to learning about the spatial relations of the landmarks 
along the route, and thus convert an initially egocentric 
navigation into an allocentric one. 

Picture memories (Fig. 28.9c): Animals learn the 
visual appearance of the environment around a particu­
larly important location (e.g., the nest) often when view­
ing from a rather stable vantage point. This behavior is 
particularly well known in insects. The simple model 
as shown in Fig. 28.9c assumes a retinotopically sta6le 
visual memory and a search strategy that minimizes the 
angular deviations between the memory and the actu­
ally experienced image. Altho\lgh the mechanisms 
assumed in this heuristic model do certainly not apply to 
navigating animals they still propose a minimal concept 
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of navigation according to picture memories. Animals 
may store several to many picture memories, and thus 
may navigate from one vantage point to the next. 

Cognitive map (Fig. 28.9d): Animals are particu­
larly attentive to landmark features when exploring the 
environment. It is this situation of observatory learning 
that may allow to determine and memorize spatial 
relations between objects in a general sense. It is pos­
sible that particularly salient features of the landscape 
(like boarder lines between areas, slope of the land­
scape, panorama, rivers etc. which are usually referred 
to as gradients) may establish a geometrically orga­
nized but spatially coarse "gradient map". Such a gra­
dient map could include islands of fine-grain picture 
memories such that animals traveling according com­
bined maps have a patchwork of information about 

where they are and where to go next. 
Evidence that animals form cognitive maps comes 

from the following observations: (i) Tolman who coined 
the term cognitive map observed that animals (rats, 
mice) chose the shortest distance to a desired place if 
they had explored the area (e.g., a maze) before. Since 
these seminal studies novel shortcuts became the 
signature for a map structure of spatial memory. (ii) 
When animals are not yet fully trained in a maze they 
may hesitate at the choice points and perform move­
ments in the direction of the intended goal. (iii) When 
animals are trained in a complex maze with multiple 
routes to the goal and one path is blocked they tend to 
decide for the nearest and shortest open path. (iv) Rats 
swimming in a milky water learn the location of a safe 
platform under water with respect to the geometry of 
the surrounding marks (Morris' water maze). All these 
behaviors require a functioning hippocampus. 

In mammals the hippocampus (together with the 
entorhinal cortex) communicates with the prefron­
tal cortex (Fig. 28.10). Functional imaging studies 
in humans support the view that the hippocampus 
complex represents locations (grid and place cells), 
computes shortcuts by path integration together with 
neurons coding head direction and yet unknown sig­
nals from an odometer (the neural distance measur­
ing device), and supports the learning of places from 
particular views. Action-based representations have 
been linked to the dorsal striatum, and observer-inde­
pendent cognitive maps appear to depend critically 
on retrospinal cortex together with the hippocampus. 
The essential role of the hippocampus for navigation is 
also known in fish, reptiles, and birds, and the volume 
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Fig. 28.9 Mechanisms of navigation. (a) In path integra­
tion animals are able to return to the point of origin (e.g., 
a nest) along a straight path after reaching the return point 
(goal) along curved movement. The rotatory component of 
their movements may be measured relative to a far distance 
source (e.g., the sun). and the translatory movement by some 
form of an odometer (distance measure). If the animals do not 
relate its outbound and inbound movements to the geometry 
of landmarks but to body' centred measures path integration is 
an egocentric form of navigation. (b) A vector memory pro­
vides the animal with the possibility to reach a distant goal 
without access to stimuli emanating from the goal (virtual 
goal). The directional component may be read from a compass 
(e.g., sun compass), the distance component from an odom­
eter. Both components may be innate as in the case of migra­
tion over very long distances or learned (for navigation in the 
close surrounding). (c) A picture memory allows the animal 
to localize itself relative to the geometry of landmarks as seen 
from a vantage point (point of origin). Finding this vantage 
point may involve sequential matching procedures in which 
the deviation of the actually experienced view from the pic­
ture memory is used to reduce the deviation .which will bring 
the animal closer and closer to the vantage point by trial and 
error. (d) The memory structure of a cognitive map relates to 
the geometry of landmarks relative to a compass system. Such 
a cognitive map could either be a complete representation of 
the spatial relations of local landmarks or it could store pre­
dominantly those relations between long ranging landmarks 
(gradient map) into which local view based memories are 
embedded. In the first case an animal will be able to reach 
the point of origin from any location within the map, in the 
laller case the gradient map would be used first to reach an 
estimated location and then to create a homeward flight by 
mUltiple matching procedures of multiple picture memories 
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Fig. 28.10 Examples of head-direction cells, a place cell, 
and a grid cell recorded from a rat hippocampus. (a) 
Response characteristics of four head-direction cells. The polar 
plot describes the neural activity of the respective cell when the 
animal is looking into the direction indicated by the angular ori­
entation of the blue line. The strength of the neural response is 
given by the deviation from the center (After [15] with permis­
sion from AAAS). (b) Place cell. The gray lines give the running 
path (trajectory) of a rat exploring a square environment. The 
red color marks the location when the place cell is firing. The 
population of place cells with different spatial firing properties 
defines the location of the animal. (c) A grid cell is characterized 
by multiple firing locations arranged in a hexagonal pattern. 
Grid cells differ with respect to the spatial separation and size of 

of the hippocampus does not only increase in London 
taxi drivers but also in pigeons with more navigational 
experience. 

Nothing is known about the neural substrate of nav­
igation in any insect. The multisensory convergence in 
the mushroom body of insects makes it likely that this 
integration center is involved in navigation. In addi­
tion, the central complex may well be involved because 
it contains neural nets that code the sun compass­
related polarization pattern of the sky and the move­
ment of the animal relative to objects [13, 18]. 
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the subfields. (d) Circuitry of the hippocampus. The neocortex is 
connected to the hippocampus mainly via two pathways through 
the parahippocampal cortex (PHR). One projects through the 
perirhinal cortex (PER) and the lateral entorhinal cortex (LEC); 
the other projects through the postrhinal cortex (POR) and the 
medial entorhinal cortex (MEC). Cells that carry information 
about the position of the animal, such as grid cells, head-direction 
cells, and boarder cells (not shown in the upper diagram) are 
found in the MEC but not in the LEC. MEC and LEC project to 
the same regions in the hippocampus, both via direct projections 
to each hippocampal subfield and via the i,ndirect trisynaptic cir­
cuit through dentate gyrus (DC) and CA3. Place cells are pyra­
midal cells of the hippocampal formation (HF) (After [5]. 
© (2010), with permission from Elsevier) 

28.5	 Working Memory: Planning 
and Decision Making 

28.5.1	 Working Memory: A Definition 

Learning leads to a change in behavior. The infonna­
tion necessary to control new and better adapted behav­
ior resides in the nervous system at many levels and is 
used to control behavior in the future. The entirety of 
all neural changes induced by learning represents a 
memory trace. Three different components of the 
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memory trace are to be distinguished: consolidation, 
retrieval, and execution. Learning does not produce the 
final memory trace immediately. Time- and event­
dependent processes form the trace, and are conceptu­
alized as consolidation processes. Short-tenn memory 
is transfonned into mid-term and long-tenn memory, 
and the molecular, cellular, neural, and systems-related 
processes are one of the most intensively studied ques­
tions in neuroscience today (see Chap. 26). Stable 
memory traces need to be moved from a silent into an 
activated state by retrieval processes. Internal condi­
tions of the animal, external cues, and a neural eearch 
process (see below) shift a silent memory into an active 
memory. The expression of the active memory may 
undergo selection processes before its content is 
expressed. Animals need to decide between different 
options as they reside in memory, and the decision pro­
cess requires access to the expected outcomes. The 
expected outcomes are stored in memory, too, and only 
when the respective memory contents are retrieved 
they will be accessible to selection processes. This net­
work of interactions between retrieval, selection, and 
execution is conceptualized in a particular fonn of 
memory - working memory. 

The concept of working memory has been derived 
from psychological studies in humans, particularly 
children, which examined the interference of two or 
more tasks to be perfonned simultaneously [7]. For 
example, a subject may be asked to do a simple arith­
metic (counting backwards) and at the same time 
keeping an item in memory. It was found that the 
capacity of working memory is limited, grows with 
age of the children, and can be assigned to subcom­
ponents (called the phonological loop, the visuospa­
tial sketchpad, and the episodic buffer) which all 
interact and converge with a central executive [I]. In 
animal studies, working memory is often related to a 
particular fonn of short-term memory as it is tested in 
delayed matching to sample or delayed matching to 
nonsample tasks (DMTS, DMTNS, see above). The 
memory span is also limited, depends heavily on the 
task, is sensitive to interference from distracting sig­
nals, and depends on the hippocampus. If the DMTS 
and DMTNS task requires the application of a rule 
learned in multiple trails, animals have to recruit the 
memory for the rule and decide whether the rule 
applies or not. 

A basic fonn of working memory was already men­
tioned in the model of operant learning (Fig. 28.2b). 
The comparator C receives input both from the effer­

ence copy (which can be considered as the readout of 
a memory trace) and the sensory feedback accompany­
ing the execution of the action SF. In this elementary 
form, a decision has to be made on the basis of the 
match/mismatch between efference copy and SF. 
Under more complex conditions the animal will find 
itself exposed to internal body conditions (5 I in 
Fig. 28.11) and environmental signals that retrieve 
multiple memory traces which lead to different out­
comes if applied (52, S3 in Fig. 28.11). These signals 
together will retrieve from stable reference memory 
several potentially relevant memories (~.g., sensory 
memories, motor perfonnance memories, value mem­
ories) that are shifted into working memory and con­
stitute the active conditions of working memory. The 
central executive processes receiving such input from 
working memory will produce the respective patterns 
of corollary discharge representing the expected out­
come of the potential motor patterns. Multiple rounds 
between working memory and central executive are 
thought to lead to a decision process that finally will 
initiate actions. 

The conceptual model in Fig. 28.11 does not require 
any conscious recollection but captures the processing 
of implicit knowledge as it is available to any nervous 
system that needs to decide between different behav­
iors. Any motor command produces an expectation of 
its outcome (the corollary discharge or efference copy) 
which is available to the working memory for internal 
processing leading to an evaluation of whether the 
expected outcome is desirable on the basis of fonner 
experience and body conditions. As all fonns of mem­
ory, working memory is a process of global neural nets 
rather than a localized function in any specialized area. 
In the mammalian brain the striatum, premotor cortex, 
and inferior parietal cortex will be more involved in 
the evaluation of potential motor perfonnances, the 
hippocampus more in those of spatial and sequential 
navigation tasks, the dopamine system of the ventral 
tegmentum more on that of the expected reward. 

The decision-making process involves components 
which are well studied in cortical sensory systems. 
Lower signal-to-noise ratios (equivalent to less strong 
neural representations, e.g., of a memory readout) 
are outcompeted by neural activations with higher 
signal-to-noise ratio. The basic mechanism of neural 
nets to settle in well-defined representations is mutual 
inhibition as experienced in visual illusion flip images. 
Thus, decisions between options that can switch indi­
cate rivalling neural processes. Decision between more 
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Fig.28.11 Conceptual model of processes underlying work· 
ing memory as it may apply to implicit knowledge of any 
nervous system that needs to decide between several behav­
iors. Working memory receives sensory input from body signals 
(SI) and external signals (S2, S3). Using these signals it retrieves 
from stable reference memory relevant memory contents and 
transfers it into an active state. These active memory contents 
may belong to sensory memory, performance memory, value 
memory, or others. Each of these multiple memories are related 
to particular behaviors that are executed centrally (central execu­
tive) leading to the activation of internal actions as represented 
by their corollary discharge or efference copy. The reciprocal 
interaction between working memory and central executive will 
lead to a decision between competing outcomes and finally exe­
cute external actions 

close neural representations requires longer process­
ing time, as well as decision between more options. 
A major yet open question relates to tbose neural 
mechanisms which connect and orchestrate tbe multi­
ple parallel processes characterizing working memory 
function. One proposal is tbat synchronous spiking 
activity may be the requirement and tbe signature for 
neural decision processes. 

28.6 Animal Thinking: The Basics 

Studies in animal behavior and its neural basis devel­
oped into a science by rejecting anthropomorphic ter­
minology and strictly applying descriptive terms. 
Behavioral processes not directly measurable were 
either ignored or not accepted as topics for scientific 
endeavor, as e.g., memory, spontaneity, and creativity 
of the brain. Behaviorism and etbology, altbough 
differing in many respects, developed ratber similar 
strategies in understanding behavior as reflection of 
input/output properties. As a consequence, spontaneity 
and creativity of the nervous system was not in tbe 

focus of mainstream comparative behavioral biology 
and neuroscience for most of tbe last century. In tbe 
wake of tbe cognitive revolution, tbe conceptual move 
from black box attitudes to tbe recognition of tbe brain 
as a creative system, research on animal cognition has 
begun to ask what kind of knowledge animals use to 
find tbeir way around, how tbey make decisions 
between options, and how tbey represent tbe social 
relationships of otbers around tbem. 

Nervous systems vary in size and architecture, and 
tbus animals come witb different adaptations to similar 
problems. It is sometimes assumed tbat "simple" ner­
vous systems like tbose of arthropods and mollusks 
solve tbe problems by radically different mechanisms 
relying on innate routines and elementary forms of 
associative learning. However, constructing a great 
divide between simple and advanced nervous systems 
will lead us astray because tbe basic logical structure 
of tbe processes underlying spontaneity, decision mak­
ing, planning, and communication are more or less tbe 
same. It is a more productive position to envisage tbe 
differences in quantitative terms ratber tban qualitative 
terms providing us witb a wealtb of "model systems" 
to elucidate tbe essence of tbe basic processes. 

Thinking about tbe basic design of a brain tbat sub­
serves cognitive functions, one recognizes a structure 
of essential modules and tbeir interconnectivity 
(Fig. 28. I 2). This architecture of modules appears to 
be shared by a large range of animal species and may 
even apply to tbe worm-like creature at tbe basis of tbe 
evolutionary divide between protostomes and deu­
terostomes, tbese two largest evolutionary streams of 
bilateral animals witb a centralized nervous system [4]. 
Altbough tbere are multiples of each of tbe modules 
depicted in Fig. 28.11 (multiple perceptual systems, 
multiple belief-generating systems, multiple desire­
generating systems, multiple action-planning systems, 
multiple motor control systems), tbe basic idea put for­
ward in tbis scheme is tbat perceptual systems feed to 
three downstream systems arranged botb serially and 
in parallel tbat converge on tbe action planning system. 
Thus, perceptual systems can reach the action-plan­
ning systems directly, and, in addition, tbe desire- and 
belief-generating systems receiving tbe same percep­
tual information will act in parallel onto action­
planning, as well. 

Given tbe similarity in tbe basic design of nervous 
systems we may ask: Are animals aware of tbemselves, 
of what tbey are doing, of what tbey are expecting, and 
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Fig. 28.12 The cognitive structure of brains composed of 
modules for perception, desire, and memory stores (belief· 
generating systems). Action planning can either be ge.l'erated 
by direct inputs from the perceptual systems or result from pro­
cesses that are generated in parallel pathways weighting the per­
ceptual inputs with respect to expected outcomes 
(belief-generating systems) and the motivational conditions of 
the animals body (desire-generating systems). These modules 
can either be rather basic (as in more simple nervous systems) or 
highly complex, but in any case the basic structure particularly 
with respect to direct and indirect pathways and necessity of 
operations between the models may apply to any nervous system 
(After [4] with permission from Oxford University Press) 

what tbey intend? This question touches on an episte­
mological problem, and we would have to ask what is 
meant by "awareness". Certainly we do not mean 
human awareness, as it is accessible to us by introspec­
tion. We certainly do also not imply tbat all animal 
species witb tbeir enormously different nervous sys­
tems have the same kind of "animal awareness", This 
means tbat terms like self-awareness, expectation, 
planning, creativity, and even learning and memory 
have different meanings for different animals, However, 
judging from all tbat we know so far, tbe difference 
relates to tbe level of complexity and not to fundamen­
tal differences. It will be tbe goal of future comparative 
studies to understand how quantitative differences in 
the structure and operation of nervous systems lead to 
the large range of animal cognition around us. 
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