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INTRODUCTION

Cognition is the integrating process that utilizes
many different forms of memory (innate and acquired),
creates internal representations of the experienced
world, and provides a reference for expecting the future
of the animal’s own actions.1,2 It thus allows the animal
to decide between different options in reference to the
expected outcome of its potential actions. All these pro-
cesses occur as intrinsic operations of the nervous sys-
tem, and they provide an implicit form of knowledge
for controlling behavior. None of these processes need
to—and certainly will not—become explicit within the
nervous systems of many animal species (particularly
invertebrates and lower vertebrates), but their existence
must be assumed given the animal’s specific behavioral
output. Here, we focus on cognitive components of
insect behavior and analyze behavioral outputs that
refer to several forms of internal processing. In doing
so, we aim to relate the complexity of the insect nervous
system to the level of internal processing, which is a
major goal of comparative animal cognition.

ACTING UPON THE ENVIRONMENT:
EXPLORATION, INSTRUMENTAL

LEARNING, AND OBSERVATIONAL
LEARNING

Insects, like all animals, explore the environment
and by doing so acquire relevant sensory, motor, and
integrative information that facilitates learning about
relevant events in such environments.3�5 Honeybees, for
instance, explore the environment before they start

foraging,6,7 and they learn the spatial relations of envi-
ronmental objects during these exploratory flights.8�10

Fruit flies (Drosophila melanogaster) also respond to their
placement within a novel open-field arena with a high
level of initial activity,11�13 followed by a reduced
stable level of spontaneous activity. This initial elevated
component corresponds to an active exploration because
it is independent of handling prior to placement within
the arena, and it is proportional to the size of the arena.14

Furthermore, visually impaired flies are significantly
impaired in the attenuation of initial activity, thus
suggesting that visual information is required for the
rapid decay from elevated initial activity to spontaneous
activity within the novel open-field arena.14

Exploratory behavior facilitates learning by associat-
ing the animal’s action to the resulting outcome. For
example, a hungry animal searching for food in a par-
ticular sensory environment learns upon a successful
search the relationship between its own actions, the
external conditions signaling the outcome, and the val-
uating signal of the food reward. This kind of associa-
tion constitutes the basis of operant (instrumental)
learning.15 Operant learning has been intensively
studied in insects. A classic protocol for the study of
this learning form is the flight simulator in which a
Drosophila is suspended from the thorax in the middle
of a cylindrical arena that allows the presentation of
visual landmarks (Figure 3.1). The tethered fly flies sta-
tionary and if some of these landmarks are paired with
the aversive reinforcement of an unpleasant heat beam
pointed on the thorax, the fly learns to fly toward a
safe direction, avoiding the dangerous-landmark direc-
tions (Figure 3.1).17,18 The fly learns to control rein-
forcement delivery as its flight maneuvers determine
the switching-off of the heat beam if the appropriate
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flight directions are chosen,18 thus constituting a case
of operant learning (see Chapters 2 and 28).

Furthermore, insects are also endowed with the
capacity to learn about the actions produced by others,
be they conspecifics or not.19 Wood crickets (Nemobius
sylvestris), for instance, learn to hide under leaves by
observing experienced conspecifics in the presence of a
natural predator, the wolf spider.20 Observer crickets
were placed in a leaf-filled arena accompanied by con-
specifics (demonstrators) that were either confronted
with a wolf spider and therefore tended to hide under
leaves or did not experience this predatory threat.
Observers that interacted with spider-experienced con-
specifics were more likely to hide under leaves than
observers that interacted with conspecifics that had
no recent spider experience. This difference persisted
24 hr after demonstrators were removed from the
experimental arena, thus showing that perception of
danger in observers had been altered by the demon-
strators’ behavior.20 Crickets did not hide under leaves
when separated from demonstrators by a partition that
allowed for pheromone exchange between compart-
ments but not visual or physical contact, nor did they
increase their tendency to hide when placed in arenas
that had previously contained crickets confronted with
spiders. Thus, naive crickets learn from experienced
demonstrators how to hide under leaves when facing a
potential threat, and this learning requires a direct con-
tact between observers and demonstrators.

An important point raised by this example of
observational learning is that it would have to take
the form of higher order conditioning because the
observer cricket would not actually directly experi-
ence the unconditional stimulus of a spider attack,
which would result in immediate death, thus making
learning superfluous. That insects are capable of
such higher order conditioning, specifically second-
order conditioning, has been shown in various cases.
Honeybees and fruit flies learn such second-order
associations. Whereas flies exhibit second-order condi-
tioning in an aversive context, in which they learn
to associate an odor (conditioned stimulus 1 (CS1))
with shock (unconditioned stimulus (US)) and then
a second odor (conditioned stimulus 2 (CS2)) with the
previously conditioned CS1,21 honeybees learn second-
order associations in an appetitive context while
searching for food. They learn to connect both two
odors (odor 11 sucrose reward; odor 21 odor 122�24)
and one odor and one color.25 Although these exam-
ples refer to the framework of classical (Pavlovian)
conditioning in which animals learn to associate
different stimuli,26 similar explanations could be pro-
vided for operant learning situations, thus rendering
the higher order conditioning explanation of observa-
tional learning plausible.

Observational learning even at a symbolic level is
exemplified by dance communication in bees (discussed
later).6
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FIGURE 3.1 The flight simulator used for visual conditioning of a tethered fruit fly.16 (Left) A Drosophila is flying stationary in a cylin-
drical arena. The fly’s tendency to perform left or right turns (yaw torque) is measured continuously and fed into a computer, which controls
arena rotation. On the screen, four ‘landmarks,’ two T’s and two inverted T’s, are displayed in order to provide a referential frame for flight
direction choice. A heat beam focused on the fly’s thorax is used as an aversive reinforcer. The reinforcer is switched on whenever the fly flies
toward a prohibitive direction. Therefore, the fly controls reinforcer delivery by means of its flight direction. (Right) Detail of a tethered fly in
suspended flight within the simulator. Source: Courtesy of B. Brembs.

15ACTING UPON THE ENVIRONMENT: EXPLORATION, INSTRUMENTAL LEARNING, AND OBSERVATIONAL LEARNING

2. CONCEPTS OF INVERTEBRATE COMPARATIVE COGNITION



EXPECTATION

Operant learning means that the animal may
develop an expectation about the outcome of its
actions. Two forms of expectation can be distin-
guished: conditioned responding to an experienced
stimulus, as in associative learning, and planning of
behavior in the absence of the stimuli associated with
its outcome. Both of these forms of expectation com-
prising lower and higher cognitive processes interact
in navigation and waggle dance communication in
honeybees. Bees navigating toward predictable food
sources follow routes and develop visual memories of
landmarks seen en route and at the locations of food
sources.8 The locations are qualified in the sense that
the insect expects the formerly experienced target
signals at specific points of its route. For instance, bees
trained to fly along a series of three similar, consecu-
tive compartments in which they have to choose
between two patterns, one positive (1) allowing pas-
sage to the next compartment and one negative (2)
blocking passage, choose between combinations of
positive patterns according to their expectation of
which should be the positive pattern at a given com-
partment.27 If, for instance, bees are trained with a
white (1) versus a black disk (2) in the first compart-
ment, a blue (1) versus a yellow disk (2) in the sec-
ond compartment, and a vertical (1) versus a
horizontal black-and-white grating (2) in the third
compartment, they prefer the positive white disk over
the positive vertical black-and-white grating in the first
compartment but they revert this preference if the
same stimuli are confronted in the third compart-
ment.27 Furthermore, bees learn the sequence of four
landmarks as cues for turns toward the feeder.28 Thus,
bees exhibit specific expectations along a route about
the outcome of landmarks that guide them toward the
food source. Similarly, bees trained to fly to different
locations in the morning and in the afternoon choose
the correct homing direction if released at the wrong
time of the day at one of these locations, and they inte-
grate this location-specific information when released
halfway between these two locations.29

A higher form of expectation can be found after
latent learning in navigation and dance communication
in honeybees. Bees perform novel shortcuts between
two or more locations within a previously explored
environment.30,31 They also fly along shortcuts between
a learned location and a location communicated by the
waggle dance of a hive mate.32 They do so without ref-
erence to beacons or a structured panorama, excluding
the possibility that they somehow rely on snapshot
memories established at the respective locations.33 The
fact that they are able in certain circumstances to fly

such shortcuts between a communicated location and a
location memorized on the basis of their own experi-
ence implies that both locations have a common spatial
reference framework. Such memory structure could
store geometric relations of objects in the explored
environment and could be conceptualized as a cogni-
tive (or mental) map because the behavior of bees meets
the definition of a cognitive map.8,30 It would include
meaningful objects at their respective locations and on
the way toward them, and thus the animal would know
at any place where it is relative to potential destinations
allowing to plan routes to locations whose signifying
signals are not available at the moments decisions are
made.

The term expectation can be applied at multiple
levels of behavioral and neural processes. A low-level
process is the efference copy of the neural program
initiating the movement that leads to an error signal
when compared with the sensory feedback resulting
from the movement.34,35 This error signal is thought to
feed into an internal, neural value system leading
to associative alterations in the neural circuits initiating
the movement. The efference copy can be considered
as a neural correlate of expectation because it precedes
the conditions of the external world and leads to a
correction of neural circuitry. On a formal ground, the
neural operation of comparison between the efference
copy and sensory feedback is equivalent to the devia-
tion from expectation as derived in computational
reinforcement learning by the delta rule.36 It has been
difficult to trace efference copies to neural circuits,
but an exciting example exists in insects. A single
multisegmental interneuron, the corollary discharge
interneuron (CDI), was found in the cricket Gryllus
bimaculatus that provides presynaptic inhibition to
auditory afferents and postsynaptic inhibition to audi-
tory interneurons when the animal produces its own
song but not when it hears songs from other animals.37

When the animal sings without sound (fictive song),
the CDI is excited and inhibits the coding of played
songs. The authors managed to stimulate CDI intracel-
lularly, resulting in inhibited auditory encoding. They
also found that excitation of CDI is specific for self-
generated songs and not for other motor patterns,
demonstrating that the CDI is both necessary and
sufficient for the blocking of sensory input expected to
be received from own song production. It will be inter-
esting to determine whether a mismatch between the
expected song pattern and the received song produces
an error signal that may be used to fine-tune own song
production, for example, after some disturbance of the
song production by the wings.

The concept of an error signal driving associative
learning has a strong impact on neural studies of
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learning-related plasticity in the nervous system. For
example, the dopamine neurons of the ventral tegmen-
tum of the mammalian brain change their response
properties to a conditioned stimulus predicting reward
(US) according to a modified delta rule.38 A similar
effect was found in an identified neuron in the honeybee
brain, which encodes the reinforcing property of the
sucrose reward (US) in olfactory learning.39 This neuron,
known as VUMmx1 (ventral unpaired median neuron 1
in the maxillary neuromere), appears to have similar
properties as dopaminergic neurons in the mammalian
brain (Figure 3.2). During differential conditioning in
which a bee is trained to respond to a rewarded odor
(CS1) and not to a non-rewarded odor (CS2), intracel-
lular recordings of VUMmx1 activity show that this neu-
ron develops responses to CS1 and stops responding
to CS2. If the US is now given after the CS1, one finds
no responses to the US anymore, but a US after CS2 is
well responded to. In other words, the neuron responds
to unexpected sucrose presentations but not to an
expected one (for further discussion, see Chapter 29).

Octopamine immunoreactive neurons in the
Drosophila brain correspond to VUMmx1 in structure
and function, and they represent the reward function
in olfactory learning.40 Dopaminergic neurons in the
Drosophila brain act as a value system in the frame-
work of aversive learning.40 These neurons thus medi-
ate the aversive reinforcing properties of electric shock
punishment in odor�shock learning. Signaling from
specific subsets of these dopaminergic neurons arbor-
izing at the level of subcompartments of paired, central
brain structures called the mushroom bodies, which
intervene in the storage and retrieving of olfactory
memories,41�43 are necessary and sufficient to support
learning of the odor�shock association.44 Thus, inhibit-
ing these neurons in genetic mutants impedes aversive
learning, whereas artificial activation of these neurons
in other types of mutants facilitates odor learning even
in the absence of shock.45�47 Interestingly, dopaminer-
gic neurons in Drosophila are weakly activated by odor
stimuli before training but respond strongly to electric
shocks. However, after one of two odors is paired
several times with an electric shock, the neurons
acquire the capacity to respond to the odor stimulus.44

Like VUMmx1, they also respond distinctly to odorants
with different outcomes in a differential conditioning
experiment with a punished odor (CS1) versus a non-
punished odor (CS2 ): In this case, odor-evoked activity
is significantly prolonged only for the CS1. Thus, dopa-
minergic neurons involved in odor�shock learning not
only mediate aversive reinforcing stimulation but also
reflect in their activity the training-induced association
with the US; in other words, during training they acquire
the capability to predict the anticipated punishment

(for further discussion, see Chapters 2, 5, 6, 27, and 28).
Recently, it was found that a subpopulation of dopamine
neurons is involved in coding the reward function in
olfactory learning of Drosophila. In vivo calcium imaging
revealed that these neurons are activated by sugar
ingestion and the activation is increased on starvation.
These dopamine neurons are selectively required for
the reinforcing property of, but not a reflexive response
to, the sugar stimulus.48

These results support the notion that reward is an
intrinsic property of structurally and functionally
defined neurons in the insect brain. It is controlled by
expectation about their own actions that are relative
to specific objects in the external world or that are
driven internally in order to fulfill expected outcomes
that are absent. The latter component—the driving
of behavior by expectations of absent outcomes—has
been highlighted in experiments in which Drosophila
larvae are trained with different kinds of appetitive
and aversive associations and afterward are tested in
retention tests in which the memories induced by this
training should be expressed.49 These experiments
show, for instance, that aversive olfactory memories
are not expressed if the test situation is performed
under extinction conditions—that is, if the previously
punished odor is presented without punishment. It is
argued that with the expected outcome of punishment
being absent, the corresponding avoidance behavior
has no reason to be expressed49 (see Chapter 5).
Conversely, after appetitive learning, memories would
be expressed only in extinction conditions because the
previously rewarded odor would be, in this case,
deprived of the expected reward (see Chapter 33 for
additional information about context dependence of
extinction learning in honeybees). In this case, it makes
sense to initiate appetitive search in order to access the
reward expected in association with this odor.49 Thus,
conditioned olfactory behavior would reflect specific
expectations and would aim at reaching specific goals
associated with these expectations.

GENERALIZATION, CATEGORIZATION,
AND CONCEPT LEARNING

Extracting information from experienced events and
applying it to solve novel situations is a distinctive
behavior of ‘intelligent’ systems. Indeed, experiments
showing that animals respond in an adaptive manner
to novel stimuli that they have never encountered
before and that do not predict a specific outcome
based on the animals’ past experience are the hallmark
of higher forms of flexible behavior. Such a positive
transfer of learning (also called stimulus transfer)
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FIGURE 3.2 (A) The VUMmx1 neuron.39 The soma is located in the maxillary neuromere, and the dendrites arborize symmetrically in the
brain and converge with the olfactory pathway at three sites (delimited by a red dashed line), the primary olfactory center, the antennal lobe (AL),
the secondary olfactory integration area, the lip region of the mushroom bodies (MB), and the output region of the brain, the lateral horn (LH).
VUMmx1 responds to sucrose solution both at the antenna and at the proboscis with long-lasting spike activity and to various visual, olfactory,
and mechanosensory stimuli with low-frequency spike activity. (B) Olfactory learning can be induced by substituting the sucrose reward in
PER conditioning by an artificial depolarization of VUMmx1 (‘sucrose signaling’) immediately after odor stimulation. If depolarization precedes
olfactory stimulation (backward pairing), no learning is observed. The same forward�backward effect is seen in behavioral PER conditioning. The
bees’ response is quantified in terms of the number of spikes of M17, a muscle controlling the movement of the proboscis. The results thus show
that VUMmx1 constitutes the neural correlate of the US in associative olfactory learning. (C) Intracellular recordings of VUMmx1 during training
and tests with a reinforced (CS1; carnation) and a non-reinforced odor (CS2; orange). Such a conditioning leads to an enhanced response of
VUMmx1 to CS1 but not to CS2 . If the US follows the presentation of the CS1, the response of VUMmx1 to the US is greatly reduced and
even inhibited. In contrast, the response of VUMmx1 to the US after the presentation of the CS2 remains normal. This indicates that differential
conditioning leads to different reward-related responses, depending on whether the reward is expected (after CS1) or not (after CS2).
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therefore brings us to a domain that differs from that
of elemental forms of learning.50

Stimulus transfer admits different levels of complex-
ity that refer to the capacity of transferring specific
knowledge to novel events based either on stimulus
similarity, and thus on specific physical traits that are
recognized in the novel events, or on more abstract rela-
tionships that constitute the basis for decisional rules.51

The first basic process that needs to be mentioned in
this context is that of stimulus generalization. Most ani-
mals, including insects, have the capacity to record
events related with relevant consequences and to signal
their reappearance. This requires learning, memoriza-
tion, and evaluation of perceptual input in relational
terms and the capacity of coping with possible dis-
tortions of the original stimuli due to noise, extrinsic
or intrinsic environmental interferences, positional or
developmental changes, etc. Generalization allows for
flexible responding when the animal is confronted with
these possible interferences because it involves asses-
sing the similarity between the present perceptual input
and the previous experience.52 The evaluation of simi-
larity is performed along one or several dimensions
such that stimuli that lie close to each other along a
perceptual scale or in a perceptual space are treated as
equivalent. As a consequence, generalization processes
imply a gradual decrease in responding along a percep-
tual scale correlated with a progressive decrease in
stimulus similarity.53�55 Stimulus generalization has
been shown in insects in perceptual domains as differ-
ent as the olfactory one,56�61 the visual one,62�66 and
the gustatory one.67,68

The next level of stimulus transfer corresponds to
categorization, which is defined as the ability to group
distinguishable objects or events on the basis of a com-
mon feature or set of features and therefore to respond
similarly to them.51,69 Categorization thus deals with
the extraction of these defining features from objects of
the animal’s environment. Labeling different objects as
belonging to the same category implies responding sim-
ilarly to them; as a consequence, category boundaries
are sharper than those corresponding to the gradual
decrease of responding along a perceptual scale under-
lying generalization.70

Numerous examples have shown that bees categorize
visual stimuli based on unique features or on arrange-
ments of multiple features.71 For instance, bees catego-
rize visual patterns based on the presence or absence of
bilateral symmetry.72 Bees were trained with triads
of patterns in which one pattern was rewarded with
sucrose solution and the other two were non-rewarded.
For the bees trained for symmetry, the rewarded
pattern was symmetric and the non-rewarded patterns
were asymmetric. For the bees trained for asymmetry,
the rewarded pattern was asymmetric and the two

non-rewarded patterns were symmetric. To avoid
learning of a specific pattern or triad, bees were con-
fronted with a succession of changing triads during the
course of training. Transfer tests presenting stimuli that
were unknown to the bees, all non-rewarded, were
interspersed during the training with the triads.

Bees trained to discriminate bilaterally symmetric
from nonsymmetric patterns learned the task and trans-
ferred it appropriately to novel stimuli, thus demon-
strating a capacity to detect and categorize symmetry or
asymmetry. Interestingly, bees trained for symmetry
chose the novel symmetric stimuli more frequently and
came closer to and hovered longer in front of them than
bees trained for asymmetry did for the novel asymmet-
ric stimuli. It was thus suggested that bees have a pre-
disposition for learning and categorizing symmetry.
Such a predisposition can either be innate and could
facilitate a better and faster learning about stimuli that
are biologically relevant73 or can be based on the trans-
fer of past experience from predominantly symmetric
flowers in the field. A specific ecological advantage
would arise from flower categorization in terms of sym-
metrical versus asymmetrical. The perception of
symmetry would be important for pollinators because
symmetry of a flower may signal its quality and thus
influence mating and reproductive success of plants by
affecting the behavior of pollinators.74 As bees discrimi-
nate between symmetry and asymmetry, they should
also be capable of performing selective pollination with
respect to floral symmetry even within a patch of flow-
ers. This may indicate that plants may have exploited
such cognitive capabilities of the pollinators during the
evolution of flowers.

A further level of stimulus transfer is termed concept
learning, which, contrary to categorization based on
specific physical features, occurs independently of the
physical nature of the stimuli considered (colors,
shape, size, etc.)75,76 and relies on relations between
objects.51,77 Examples of such relations are ‘same as,’
‘different from,’ ‘above/below of,’ and ‘on the left/
right of.’ Extracting such relations allows transferring a
choice to unknown objects that may differ dramatically
in terms of their physical features but that may fulfill
the learned relation.

Various recent reports have indicated that honey-
bees learn relational rules of different sorts. These
include ‘sameness/difference,’78 ‘above/below,’79 and
the mastering of two rules simultaneously—‘above/
below’ (or left/right) and ‘different from.’80

Learning of the concepts of sameness and difference
was demonstrated through the protocols of delayed
matching to sample (DMTS) and delayed non-matching
to sample (DNMTS), respectively.78 Honeybees foraging
in a Y-maze (Figure 3.3A) were trained in a DMTS exper-
iment in which they were presented with a changing
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non-rewarded sample (i.e., one of two different color
disks (‘color group’) or one of two different black-and-
white gratings, vertical or horizontal (‘pattern group’)) at
the entrance of a maze (Figure 3.3B). The bees were
rewarded only if they chose the stimulus identical to the
sample once within the maze. Bees trained with colors
and presented in transfer tests with black-and-white
gratings that they had not experienced before solved the
problem and chose the grating identical to the sample
at the entrance of the maze. Similarly, bees trained with
the gratings and tested with colors in transfer tests also
solved the problem and chose the novel color corre-
sponding to that of the sample grating at the maze
entrance (Figure 3.3C). Transfer was not limited to
different types of visual stimuli (pattern vs. color) but
could also operate between drastically different sensory
modalities such as olfaction and vision.78 Bees also
mastered a DNMTS task, thus showing that they learn a
rule of difference between stimuli as well.78 These results
document that bees learn rules relating stimuli in their
environment. They were later verified in a study show-
ing that the working memory underlying the solving of
the DMTS task lasts for approximately 5 sec,81 a period
that coincides with the duration of other visual and
olfactory short-term memories characterized in simpler
forms of associative learning in honeybees.82

More recently, bees were shown to process two
concepts simultaneously, which presupposes an even
higher level of cognitive sophistication than dealing
with one concept at a time. Following a training in
which they had to learn to choose two distinct objects
in a specific spatial relationship (above/below or

right/left), they mastered two abstract concepts simul-
taneously, one based on the spatial relationship and
another based on the perception of difference.80 Bees
that learned to classify visual targets using this dual
concept transferred their choices to unknown stimuli
that offered a best match in terms of dual-concept
availability: Their components presented the appropri-
ate spatial relationship and differed from one another.
These results thus demonstrate that it is possible for a
bee to extract at least two different concepts from a set
of complex pictures and combine them in a rule for
subsequent choices.

MEMORY PROCESSING

Learning does not produce the final memory trace
immediately. Time- and event-dependent processes,
conceptualized as consolidation processes, form the
memory trace. Short-term memory is transformed into
midterm and long-term memory, and the molecular,
cellular, neural, and systemic processes underlying
this transformation are currently intensively studied
(see Chapter 27). Stable memory traces need to be
moved from a silent into an activated state by retrieval
processes. Internal conditions of the animal, external
cues, and a neural search process shift a silent memory
into an active memory. The expression of the active
memory may undergo selection processes before its
content is expressed. Animals need to decide between
different options as they reside in memory, and the
decision process requires access to the expected

FIGURE 3.3 (A) Y-maze used to train bees in a delayed matching-to-sample task.78 Bees had to enter into the maze to collect sugar solu-
tion on one of the back walls of the maze. A sample was shown at the maze entrance before bees accessed the arms of the maze. (B) Training
protocol. A group of bees were trained during 60 trials with black-and-white, vertical and horizontal gratings (pattern group); another group
was trained with colors, blue and yellow (color group). After training, both groups were subjected to a transfer test with novel stimuli
(patterns for bees trained with colors, and colors for bees trained with patterns). (C) Performance of the pattern group and the color group in
the transfer tests with novel stimuli. Both groups chose the novel stimulus corresponding to the sample, although they had no experience
with such test stimuli.
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outcomes. The expected outcomes are also stored in
memory, and only when the respective memory
contents are retrieved will they be accessible to selec-
tion processes. This network of interactions between
retrieval, selection, and execution is conceptualized in
a particular form of memory—working memory.

Memory systems are also categorized according to
their contents. In vertebrates, different contents are
related with particular brain structures—for example,
procedural memory (cerebellum), episodic memory
(hippocampus and prefrontal cortex), and emotional
memory (amygdala). Whereas procedural memory cer-
tainly exists to a large extent in insects in their ventral
ganglia, it is unknown whether memories qualifiable
as ‘emotional’ exist in insects and, if so, whether they
reside in modulatory neurons related to reward and
punishment and/or in other sets of the widely branch-
ing peptidergic neural networks. Higher order forms
of memory are usually related to the mushroom bodies
(see Chapter 28), but the level of higher order proces-
sing mediated by these structures is unknown. Do
insects possess a form of episodic memory—the ability
to carry out long-term recall of sequences of events or
narratives?83 In humans, birds, and mammals, this
property is intimately related to the functions of the
hippocampus and cerebral cortex. It is argued that
food-storing birds may develop an episodic-like mem-
ory about a kind of food stored at a certain place and
at a certain time.84 Pollinating insects certainly control
their foraging activities according to the kind of food
they collect at a particular place and at a specific time
of day, but it is unknown whether they make decisions
between options integrating the what, where, and
when of potential food sites.

Memory systems are highly dynamic and content
sensitive. Any retrieval from the memory store will
change its content due to the updating process in
working memory. It is precisely this updating process
that may lead to extracting rules that underlie implicit
forms of abstraction in the visual domain (discussed
previously). Furthermore, retrieval from memory store
also induces re-learning and consequently consolida-
tion into a new memory form, a process referred to as
“reconsolidation.”85 This process has been demon-
strated in the honeybee (see Chapter 33).

From an evolutionary standpoint, one may expect
that memory dynamics are adapted to choice behavior
under natural conditions. Foraging in pollinating
insects has a highly regular sequential structure of
events ranging from actions within seconds to those
separated by months. It thus offers the opportunity to
relate memory structure and ecological demands.82

Choices between flowers within the same patch
quickly succeed each other and are performed during
early short-term memory. Choices between flowers of

different patches occur after the transition to late
short-term memory. Successive foraging bouts are
interrupted by the return to the hive so that flower
choices in a subsequent bout require retrieving infor-
mation from midterm memory. Finally, interruptions
of days, weeks, and months (the latter in the case of
overwintering bees) require retrieval from long-term
memory.

Internal processing at the level of working memory
can be understood as an indication of rudimentary
forms of explicit processing and may exist in insects
(and cephalopods; see Chapters 23�25) within the con-
text of observatory learning and social communication.
Paper wasps recognize each other on an individual
basis (see Chapter 42); the ant Temnothorax albipennis
informs colony members about a new food site by
a particular behavior termed tandem running and
that has been assimilated to a form of teaching (see
Chapter 40); and bees employ a symbolic form of
social communication for the transfer of information
about spatial food locations. Key components in all
these forms of learning and teaching are the retrieval
of remote memory and the incorporation of the new
information into the existing memory. Working mem-
ory provides implicit forms of representation as a sub-
strate for various kinds of neural operations. These
may include evaluation of the new information on the
background of existing memory, extraction and updat-
ing of rules connecting the contents of memory, and
decision making in relation to the expected outcome of
the animal’s actions.

Addressing the properties and functioning of active
working memory requires for each paradigm a careful
evaluation of whether elemental forms of learning and
memory retrieval are sufficient to explain behavioral
performances. The tradition of the most parsimonious
explanation provides a strong tool in science and is
well observed in behavioral studies, particularly in
those performed with insects. However, the rigidity of
some experimental designs frequently used in labora-
tory studies of insect behavior might result in the dan-
ger that the animal in its restriction can only do what
the experimenter allows it to do. The conclusion from
such experiments is often that because the animal did
what was expected from it, this is the only behavior
it possesses. Although scientific progress is bound to
search for the most parsimonious explanation, it is not
obvious what may be more or less demanding for the
small brain of an insect. For example, will it be more
difficult to follow a navigation strategy based on route
following or on using a cognitive-map? Is it easier to
store many sequential images defining a long route or
to extract a rule connecting these images? Are neural
processes derived from behavioristic learning theory
less demanding than those derived from cognitive
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concepts? The answer at this stage is that we simply
do not know, and that the only way to find out is
to search for neural mechanisms within a broader
conceptual frame. We also need to acknowledge that
potential behavioral acts that are not performed by an
animal are equally important as expressed behavior.
Only by accepting that an attentive brain is constantly
producing potential behaviors, most of which are not
expressed, will we be able to search for the neural
basis of the ‘inner doing’ as a prerequisite of decision-
making processes.

INSECT INTELLIGENCE AND
BRAIN STRUCTURE

Thinking about the basic design of a brain subser-
ving the cognitive functions discussed previously, one
recognizes a structure of essential modules and their
interconnectivity (Figure 3.4).86 This modular architec-
ture seems to be shared by a broad range of animal
species and may even apply to the wormlike creature
at the basis of the evolutionary division between proto-
stomes and deuterostomes. These species possess vari-
ous kinds of perceptual and motor control systems,
which constitute the input and output, respectively, of
the architecture presented in Figure 3.4. Premotor cen-
ters convey information to motor control systems and
therefore act as action planning systems. ‘Desire’ is
used here to represent the expected outcomes of
behavior, either appetitive or aversive, available to ani-
mals via specific signaling pathways. ‘Belief,’ on the
other hand, refers to innate or experience-dependent
memories—that is, to the knowledge that the animal
has at its disposition and that drives its actions and
decisions.

Although the modules depicted in Figure 3.4 may be
multiple (multiple perceptual systems, multiple belief-
generating systems, multiple desire-generating sys-
tems, multiple action-planning systems, and multiple
motor control systems), the basic idea of this scheme is
that perceptual systems feed onto three downstream
systems arranged both serially and in parallel that con-
verge on the action-planning systems,86 which in turn
drive the motor systems. Thus, perceptual systems can
reach the action-planning systems directly; in addition,
the desire- and belief-generating systems receiving the
same perceptual information will act in parallel onto
action planning, as well.

When we talk about ‘modules’ and ‘systems,’ we
mean, in essence, neurons and neural networks.
Therefore, if such a scheme should be of any heuristic
help in understanding the insect brain, its skeleton
needs the flesh of neurons and their functions. The
chapters on the insect brain in this volume document

such a fleshing out (see Chapters 4, 27, 29, and 41).
Sensory systems (vision, olfaction, and mechanosen-
sory) connect to premotor areas via two pathways—a
more direct pathway and one via the mushroom body.
This is well illustrated in the olfactory circuit of the
honeybee, in which olfactory information processed in
the first olfactory neuropile, the antennal lobe, is con-
veyed to the mushroom body and then to the lateral
horn, a suspected premotor area, via a medial tract
of projection neurons or directly to the lateral horn
and then to the mushroom bodies via a lateral tract of

FIGURE 3.4 (A) The cognitive architecture of a generic brain
based on interconnected modules for perception, desire- and belief-
generating systems, action-planning systems, and motor control
systems.86 Action planning can either be generated by direct inputs
from the perceptual systems or result from processes that are gener-
ated in parallel pathways weighting the perceptual inputs with
respect to learned expectations (belief-generating systems) and signal-
ing of appetitive or aversive outcomes (desire-generating systems).
These modules can either be rather basic (as in more simple nervous
systems) or highly complex, but their basic structure, particularly
with respect to direct and indirect pathways and the necessity of
operations between modules, may apply to any nervous system.
(B) The cognitive architecture of a honeybee brain illustrated in the
case of the olfactory circuit. Olfactory receptor neurons (ORNs) send
information about odors to the antennal lobe (AL), which further
conveys this information via a direct tract of projection neurons
(m-ACT) to the mushroom body (MB), which hosts long-term, olfac-
tory memory traces, and to the lateral horn (LH), a premotor center,
via a different tract of projection neurons (l-ACT). The m-ACT tract
further projects to the LH and the l-ACT tract to the MB. MBs send
feedback neurons to the AL. VUMmx1 is a neuron whose activity
mediates the reinforcing properties of appetitive stimuli (e.g., sucrose
reward). VUMmx1 contacts the olfactory circuit at the level of the AL,
the MB, and the LH, thus favoring the association between odor and
sucrose, which is at the basis of olfactory learning. The motor output
is represented here by M17, a muscle controlling the appetitive
response of proboscis extension, which the bees exhibit to sucrose
and/or to an odorant that has been learned to predict sucrose.
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projection neurons. The ‘desire’-generating systems are
multifold and can be retraced to octopamine- and
dopamine-containing neurons, signaling appetitive
and aversive outcomes, respectively, and to widely
branching peptidergic neurons. The VUM neurons are
known to feed into three subsystems in parallel—the
action-planning systems such as the lateral horn,
the belief-generating system (the mushroom body), and
the perceptual system (particularly the olfactory anten-
nal lobe). Less is known about the wiring of the dopa-
mine neurons, and it will be interesting to determine
whether they also follow this scheme. The inputs from
body states onto the desire-generating systems have
not yet been identified, but because their function is
modulated by body states (e.g., the levels of satiation,
sleep, arousal, and attention), we must assume that
such input does exist. In brief, such a ‘boxicology’ of
general brain functions, as developed for mammalian
brains,86 applies surprisingly well to the insect brain,
and the chapters on insects in this book provide ample
evidence for the working of the neurons and networks
as components of these boxes.

MINIATURE BRAINS

It is sometimes assumed that ‘simple’ and ‘minia-
ture’ nervous systems such as those of arthropods and
(most) mollusks implement cognitive faculties by radi-
cally different mechanisms compared to vertebrates,
relying predominantly or exclusively on innate routines
and elemental forms of associative learning. However,
as exemplified previously, constructing a great divide
between simple and advanced nervous systems will
lead us astray because the basic logical structure of the
processes underlying spontaneity, decision making,
planning, and communication are similar in many
respects in large and small brains. Therefore, it seems
more productive to envisage differences in quantitative
rather than qualitative terms, providing us with a
wealth of ‘model systems’ to elucidate the essence of
the basic cognitive processes.

In contrast to studies in mammals and birds,87 criteria
on brain�behavior relations have not been applied sys-
tematically to insects. However, it can be tentatively con-
cluded that relatively large insect brains, particularly
those with complex mushroom bodies such as those
occurring in social Hymenoptera, are equipped with
more behavioral flexibility. In the search for neural corre-
lates of behavioral flexibility, features such as ‘informa-
tion processing capacity’ (IPC) based on the specific
neural features have been invoked.88�90 These features
are, for instance, the number of neurons, dendritic struc-
tures, the packing density of synaptic connections, and
axonal conduction velocity.90 However, there is no linear

relationship between IPC and these measures because
brains are organized to reduce wiring costs and smaller
brains require fewer material and less energy for con-
struction and maintenance.91 Long-distance communica-
tion within the brain appears to be a major component
of IPC, but it also consumes a high amount of energy
for spike propagation, again favoring miniaturization.
Splitting information across parallel pathways, reducing
feedback neural connections, sparse coding, and syn-
chronous activity are a few of many probable neural
processes that keep energy consumption low and infor-
mation capacity high.91 Such additional processes could
be (1) a globular organization of the neuropil (as found
in birds and invertebrates) rather than a sheeted organi-
zation (as in the cerebral cortex in mammals); (2) large
and widely branching neurons whose dendritic branches
may participate in different forms of neural processing,
either simultaneously or sequentially; and (3) direct
oxygen supply via tracheas, which may make energy
consumption more efficient and reduce the size and
weight of insect brains. Taken together, these processes
may endow small brains with relatively higher IPC
compared to large brains.

CONCLUSION

It has often been said that neuroscience lacks a the-
ory (or theories) of the brain.92,93 Indeed, there appears
to be no concept at the level of the neurons, the net-
works, or the whole brain that is able to provide
enough generality for developing such a theory.
Potentially, the ‘boxicology’ of Carruthers86

(Figure 3.4), together with the hard facts obtained
from anatomy, physiology, and behavioral analysis,
may provide a path toward developing a theory
about how small brains work. Such a theory would
need to include the ‘inner doing’ of the brain—its
operations that are not (yet) expressed in behavioral
acts and that include operations on representations
meaning neural processes at the level of working mem-
ory (see Chapter 2). As stated by Carruthers in his book
Architecture of the Mind,86

To be a believer/desirer . . . means possessing distinct
content-bearing belief-states and desire-states that are discrete,
structured, and causally efficacious in virtue of their structural
properties. These are demanding conditions. But not so
demanding that the nonhuman animals can be ruled out as
candidates immediately. Indeed we propose to argue, on the
contrary, that many invertebrates actually satisfy these
requirements. (p. 68)

Future studies on insect brains will gain by incorpo-
rating these concepts and by relating them to specific
neural modularity and connectivity.
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