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Abstract

Axon pathfinding and synapse formation rely on precise spatiotemporal localization of guidance receptors. However, little is
known about the neuron-specific intracellular trafficking mechanisms that underlie the sorting and activity of these
receptors. Here we show that loss of the neuron-specific v-ATPase subunit a1 leads to progressive endosomal guidance
receptor accumulations after neuronal differentiation. In the embryo and in adult photoreceptors, these accumulations
occur after axon pathfinding and synapse formation is complete. In contrast, receptor missorting occurs sufficiently early in
neurons of the adult central nervous system to cause connectivity defects. An increase of guidance receptors, but not of
membrane proteins without signaling function, causes specific gain-of-function phenotypes. A point mutant that promotes
sorting but prevents degradation reveals spatiotemporally specific guidance receptor turnover and accelerates
developmental defects in photoreceptors and embryonic motor neurons. Our findings indicate that a neuron-specific
endolysosomal degradation mechanism is part of the cell biological machinery that regulates guidance receptor turnover
and signaling.
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Introduction

Axon guidance, target selection, and synapse formation

determine the neuronal connectivity of the brain and rely on the

spatially and temporally controlled localization of guidance

receptors [1,2]. The dynamic localization of these receptors is at

least partly regulated at the level of vesicular membrane trafficking

through the secretory pathway, endosomal recycling, and

endolysosomal degradation [3,4]. Endosomal routing is also a

means of receptor activation and inactivation: receptors may

signal from the plasma membrane or endosomal compartments,

and receptor signaling can be turned off by endolysosomal

degradation [4,5]. A growth cone may reuse a number of guidance

receptors through cycles of endo- and exocytosis. Alternatively,

constitutive synthesis and degradation may provide a constant

stream of receptors that can be sorted to exert spatiotem-

porally defined roles. However, for most cell types it is unknown

which mode of receptor trafficking prevails to regulate receptor

(de)activation during development and function. Similarly, sur-

prisingly little is known about the neuron-specific molecular

mechanisms that underlie guidance receptor trafficking for either

strategy during brain wiring.

The Drosophila nervous system has proven to be a powerful

system for the characterization of the molecules that guide axons

along their pathways and enable correct target selection [6–9].

The visual system has been particularly useful, because both

photoreceptors and visual interneurons are dispensable for

viability and are easily genetically manipulated in otherwise

wild-type flies. Genetic screens based on methods that generate

mutant visual neurons in heterozygous flies led to the discovery of

numerous important secreted and membrane-associated guidance

molecules and receptors, their regulators, and signal-transducing

proteins [10–12]. Amongst the many known guidance molecules

and receptors implicated in visual system development are the

cadherins N-Cadherin (N-Cad) and Flamingo (Fmi) [10,13,14],

the tyrosine phosphatases DPTP69D and Dlar [15–17], and the

immunoglobulin superfamily cell adhesion molecules Fasciclin 2

(Fas2) and Roughest (Rst) [18–20]. Although spatiotemporally

dynamic expression has been shown for most of these receptors,

almost nothing is known about their intracellular trafficking,

activation, turnover, and degradation.

Genetic mosaic screens in the Drosophila visual system have also

led to the discovery of numerous mutants with membrane and

organelle trafficking defects [21–23]. The Drosophila gene v100 was

originally identified in a screen for mutants that affect synapse

formation, specification, or function [23,24]. v100 encodes subunit

a1 of the V0 complex, the membrane-bound sector of the two-

sector vesicular (v-)ATPase [25,26]. V100 is a neuron-specific

subunit of the v-ATPase that is required for neurotransmitter

release [24] and provides a neuronal degradation mechanism in
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photoreceptors. This degradation mechanism is created by a dual

function: V100 sorts vesicles into endosomal compartments and

subsequently acidifies degradative compartments as part of the v-

ATPase holoenzyme. Loss of v100-dependent degradation leads to

adult-onset degeneration, but no developmental or synaptic

specification defects in photoreceptors [27]. Similarly, v100

mutant embryos exhibit normal nervous system morphology [24].

In this study, we report that a neuron-specific, v100-dependent

membrane sorting and degradation mechanism is required for

brain wiring in Drosophila. Loss of v100 results in missorting and

intracellular accumulation of guidance receptors at the time and

place where they are subject to active turnover. These accumu-

lations precede axon mistargeting. We further show that guidance

receptors aggregate on endolysosomal compartments and cause

exacerbated gain-of-function phenotypes in v100 mutant photo-

receptors as well as in the embryonic nervous system. Our findings

suggest that continuous receptor turnover and degradation by a

neuron-specific mechanism is a general mode of guidance receptor

trafficking. Our data further suggest that a v100-dependent

neuronal degradation mechanism underlies a regulatory strategy

that depends on a constant turnover of receptors that can be sorted

to exert spatiotemporally defined roles.

Results

V100 Is Required for Neuronal Connectivity in the
Developing Adult Central Nervous System, but Not in
Photoreceptors or Any Embryonic or Larval Neurons

Several genetic mosaic methods have been developed that

render visual system neurons homozygous mutant in heterozygous

flies [11,12,28]. In our previous studies of v100 function in

photoreceptors, we used the ‘‘ey3.5Flp’’ system developed by

Salecker and colleagues, which renders only photoreceptors

mutant [28,29]. Our studies on v100 in photoreceptors uncovered

defects in neurotransmission [24] and neurodegeneration [27], but

no developmental defects. In contrast to this photoreceptor-

specific method, the original eyFLP system [11] generates

thousands of homozygous mutant neurons in the central nervous

system (CNS) in addition to photoreceptors. Importantly, eyFLP

affects only CNS neurons of the visual and olfactory systems that

are not required for viability of the organism under laboratory

conditions and thereby allows the investigation of v100 mutant

central brain neurons in a living fly (Figure S1) [29]. Surprisingly,

we found severe axon pathfinding and targeting defects in these

eyFLP v100 brains that were not present in our previous

experiments when only photoreceptors were mutant (Figure 1A–

1D). Further analysis of the eyFLP v100 brain with the active zone

marker Brp (nc82) revealed severe structural defects in the

arrangement of synaptic neuropils resulting from defective axon

pathfinding during pupal development prior to synaptogenesis

(Figure 1E and 1F). For clarity we will hereafter refer to the

photoreceptor-specific system as eyFLPPRonly and the original eyFLP

system that additionally renders CNS neurons mutant as eyFLPCNS.

Neuron-specific expression of v100 with the elavc155-Gal4 driver

is sufficient to rescue viability in Drosophila [24]. However, Peri and

Nusslein-Volhard recently reported a function for the zebrafish

ortholog of v100 in phagosomal/lysosomal fusion in microglial

cells [30]. The zebrafish v100 (atp6v0a1) is a true ortholog because

the protein is more closely related to Drosophila V100 (61%

identical) and the human subunit a1 (82% identical) than it is to

the closest paralog in zebrafish (V0 subunit a2, 54% identical). We

therefore wondered whether the developmental CNS defects

described here could be attributed to a non-neuronal cell type. We

analyzed v100 mutant brains rescued with only neuronal v100

expression. As shown in Figure 1D, neuronal expression of v100

rescues the wiring defect of an eyFLPCNS brain. Hence, v100 is

required in CNS neurons for brain wiring in Drosophila.

We have recently shown that V100 is expressed in the pupal

and adult visual system [27]. To determine the onset of V100

expression in the developing CNS, we performed co-labeling

experiments with the developing synapse marker N-Cad and the

active synapse marker Synaptotagmin (Syt). As shown in Figure

1G–1I, anti-V100 labeling of a larval brain hemisphere reveals

strong enrichment in the synaptic neuropils of the functional larval

brain (arrows). In contrast, regions of neuronal and glial

differentiation are labeled at only background levels, suggesting

no prominent role during early brain development. However, at

the time of axon targeting at 20% pupal development (P+20%),

V100 is strongly enriched in the developing first synaptic neuropil

in the optic lobe, the lamina plexus, where axon terminals are

actively sorting to generate a precise visual map (arrows in Figure

1J–1L). V100 labeling at this time is most prominent in the lamina

plexus, but increases in all neuropils throughout development

(Figure 1M–1O). Note that V100 labeling, although enriched in

the synaptic neuropils, appears distinctly different from that of the

synaptic vesicle marker Syt (Figure 1M–1O). These data show that

V100 is enriched in specific synaptic regions of the visual system

prior to synaptogenesis. Taken together our data indicate that

v100 plays a hitherto unrecognized developmental role in CNS

neurons of the adult brain.

Next, we asked whether the observed brain wiring defects are

caused by early cell death. Immunolabeling of activated Caspase-3

[31] in eyFLPCNS brains reveals no significant difference in the

number of cells undergoing programmed cell death between

mutant and wild type during development (Figure S2A and S2B;

eyFLPCNS v100: 34610 apoptotic cells per confocal optic lobe

section; control: 3169) or in 10-d-old optic lobes (mutant neurons

marked in green, control unmarked; Figure S2C). This is

consistent with the previously documented finding of slow adult-

Author Summary

Brain wiring is determined by genetic and environmental
factors, nature and nurture. The Drosophila brain is a
model for the genetic basis of brain wiring. The fly visual
system in particular is thought to be ‘‘hard-wired,’’ i.e.,
encoded solely by a genetic program. Some key genes
encode the guidance receptors that serve as ‘‘wiring’’ and
synaptic connectivity signals. However, it is poorly
understood how guidance receptors are spatiotemporally
regulated to serve as meaningful synapse formation
signals. Indeed, many genes required for brain wiring do
not encode the guidance receptors themselves, but rather
encode parts of the cell biological machinery that governs
their spatiotemporal signaling dynamics. For example, the
vesicular ATPase is an intracellular sorting and acidification
complex involved in regulating guidance receptor turn-
over and signaling. The protein V100 is a member of this v-
ATPase complex, and in this study we show that mutations
in the v100 gene cause brain wiring defects specifically in
the adult brain. We further describe a V100-dependent
intracellular ‘‘sort-and-degrade’’ mechanism that is re-
quired in neurons, and find that when this mechanism is
perturbed, it leads to progressive build-up of and aberrant
signaling by guidance receptors. These data suggest that a
v100-dependent neuronal degradation mechanism pro-
vides a cell biological basis for guidance receptor turnover
and spatiotemporally controlled dynamics during neural
circuit formation.

Guidance Receptor Degradation in Brain Wiring
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onset degeneration in photoreceptors, which causes cells to

become unhealthy long after development is complete [27]. These

data indicate that the brain wiring defects are not the result of

premature cell death.

Loss of v100 Causes Guidance Receptor Accumulations in
CNS Neurons in the Optic Lobe

Our previous characterization of V100 function revealed roles

in synaptic vesicle exocytosis [24] and endolysosomal degradation

in neurons [27]. The brain wiring defects described in this study

are unlikely to be caused by defects in neurotransmitter release,

since we and others have previously shown that neuronal activity,

including synaptic vesicle release, is not required for photoreceptor

or optic lobe development [23,32]. In contrast, v100’s role in

neuronal endolysosomal degradation could potentially be required

for development since many signaling molecules are regulated

through the endolysosomal pathway. This idea raises the question

how a defect in endolysosomal trafficking could lead specifically to

neuronal connectivity defects in the brain without affecting earlier

stages of neuronal development.

Cell adhesion molecules that function as guidance receptors are

key proteins directing axon pathfinding and targeting. To

investigate a possible link between v100 and the observed brain

wiring defects, we analyzed several guidance receptors known to

play roles during optic lobe development and visual map

formation in the Drosophila brain. First, we investigated the

localization patterns of the five guidance receptors Dlar, N-Cad,

Fmi, Fas2, and Rst [10,13,17,33,34] in 1-d-old control and

eyFLPCNS brains. All five guidance receptors exhibit a similar

phenotype of aberrant accumulations in synaptic neuropils and

cell bodies of the eyFLPCNS optic lobe (Figure 2). This phenotype is

most pronounced for Dlar and N-Cad, whose wild-type expression

patterns in the optic lobe are restricted to synaptic neuropils

(Figure 2A, 2B, 2I, and 2J) [13,17]. While these findings show that

guidance receptor localization is indeed affected in v100 mutant

neurons, they also indicate that the underlying intracellular

trafficking defect is not specific to a particular guidance receptor.

Hence, our results suggest that the developmental defects are a

cumulative effect of the mislocalization of many receptors.

Guidance Receptors Accumulate on Endosomal
Compartments in v100 CNS Neurons

v100 mutant photoreceptors exhibit a slow accumulation of

endolysosomal compartments [27]. Intracellular accumulation of

guidance receptors might cause developmental defects in CNS

neurons by at least two mechanisms. First, receptors might fail to

be transported to the plasma membrane, leading to loss-of-

function phenotypes. Second, receptors might fail to endocytose or

accumulate on signaling-active endosomal compartments, leading

to gain-of-function phenotypes. In contrast to such loss- or gain-of-

function effects, accumulation of receptors in signaling-inactive

lysosomal compartments should not lead to any receptor-specific

defects. We therefore analyzed guidance receptor localization on

intracellular compartments using an eyFLPCNS-based approach

where only mutant cells are fluorescently marked (mosaic analysis

with a repressible cell marker [MARCM]; [35]). First, we

confirmed that v100 mutant CNS neurons have the same

endolysosomal accumulations previously described for photore-

ceptors [27]. As shown in Figure 3A and 3B, both the early

endosomal marker 2xFYVE-GFP and the late endosomal marker

Rab7 accumulate in v100 mutant neurons. 2xFYVE-GFP is a

cytosolic probe that predominantly marks early endosomal

compartments by associating with PI(3)P-rich membranes [36].

Note that in this experiment only 50% of CNS neurons are mutant

and these cells are marked with 2xFYVE-GFP expression. As

shown in Figure 3A, 2xFYVE-GFP exhibits only low levels of

labeling in wild-type clones. In contrast, v100 mutant CNS

neurons exhibit substantial accumulations (arrows in Figure 3B).

Figure 1. V100 is required for neuronal connectivity in the
adult brain. (A–D) 3-D visualizations of photoreceptor projections in
the adult brain immunolabeled for Chaoptin (distal to the left). (A and
B) Both control and v100 mutant photoreceptors (eyFLPPRonly v100)
exhibit wild-type axon targeting patterns. (C and D) In contrast,
photoreceptor targeting is disrupted in optic lobes with mutant CNS
neurons (eyFLPCNS v100) and rescued with pan-neuronal expression of
wild-type v100 cDNA using elav-Gal4. (E and F) 3-D visualizations of
optic lobe neuropils immunolabeled with Brp/nc82 in control (E) and
eyFLPCNS v100 (F). See also the schematic of optic lobe structure in
Figure S1C. (G–O) Characterization of wild-type V100 expression
dynamics in the developing optic lobe. (G–I) Wild-type L3 larval brain
hemisphere. Developing synapses are immunolabeled with anti-N-Cad
(green); active synapses are labeled with anti-Syt (blue); anti-V100 is in
red. Note that V100 mostly localizes to active neuropil regions in the
larval brain (arrows). (J–L) At P+20%, V100 is strongly enriched in the
lamina plexus, i.e., the developing first optic neuropil. (M–O) At P+40%,
V100 is enriched in all synaptic neuropils of the developing optic lobe
(arrows), where it remains throughout adulthood. Scale bar in (G) for
(G–O): 50 mm.
doi:10.1371/journal.pbio.1000553.g001

Guidance Receptor Degradation in Brain Wiring
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Rab7-positive compartments exhibit similar accumulations. How-

ever, PI(3)P-rich endosomal accumulations are even more

apparent than Rab7 accumulations (compare green and red

labeling in Figure 3B). These results are consistent with our

previous characterization of endolysosomal accumulations in

photoreceptors and indicate that v100 mutant CNS neurons

exhibit the same endolysosomal trafficking problem. As in

Figure 2. Loss of v100 causes guidance receptor accumulations
in CNS neurons in the optic lobe. Confocal images of 1-d-old
Drosophila optic lobe sections labeled with antibodies against the
guidance receptors Dlar (A and B), Rst (C and D), Fmi (E and F), Fas2 (G
and H), and N-Cad (I and J). All five guidance receptors accumulate in
cell bodies and at synapses of eyFLPCNS v100 optic lobes, while

accumulations are absent in control brains. Scale bar in (A) for (A–J):
50 mm.
doi:10.1371/journal.pbio.1000553.g002

Figure 3. Loss of v100 in CNS neurons causes endosomal
guidance receptor accumulations. (A and B) Confocal sections of
adult eyFLPCNS control (A) and v100 (B) optic lobes with 50% of all
eyFLPCNS cells labeled with 2xFYVE-GFP. Expression of 2xFYVE-GFP
results in a weak 2xFYVE-GFP signal in control cells (A) but strong
accumulations in v100 mutant CNS neurons (B). Similarly, immunola-
bleling of the late endosomal marker Rab7 (red) reveals increased
accumulations in v100 mutant CNS neurons. 2xFYVE-GFP only shown in
(A’ and B’), Rab7 only in (A0 and B0), V100 only in (A0’ and B0’). (C) High-
resolution confocal section of adult eyFLPCNS v100 optic lobe with 50%
of all eyFLPCNS cells labeled with lamp-GFP. Similar to 2xFYVE-GFP and
Rab7, the lysosomal marker lamp-GFP accumulates. However, Dlar
accumulations colocalize more with the early endosomal marker Syx7
(arrows, blue) than with Lamp-GFP. Lamp-GFP only shown in (C’), Dlar
only in (C0), Syx7 only in (C0’). (D and E) High-resolution confocal
sections of eyFLPCNS v100 mutant CNS neuron cell bodies in the medulla
cortex (D) and photoreceptor synapses in the lamina (E). Syx7 only
shown in (D’ and E’), Fas2 only in (D0 and E0). Scale bar in (A) for (A and
B): 50 mm; scale bar in (C): 5 mm; scale bar in (D) for (D and E): 5 mm.
doi:10.1371/journal.pbio.1000553.g003

Guidance Receptor Degradation in Brain Wiring
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photoreceptors, early endosomal markers are upregulated

strongest [27].

Next, we analyzed subcellular guidance receptor localization. As

shown in high-resolution confocal images in Figure 3C, the

receptor Dlar accumulates in highly heterogeneous compartments

in CNS neuronal cell bodies. In this experiment, we marked the

mutant cells with the lysosomal marker lamp-GFP, a transmem-

brane protein that traffics through the endolysosomal pathway and

is quickly degraded in wild type [37]. Co-labeling with the early

endosomal marker Syx7 reveals that 68.7% of all Dlar

accumulations are Syx7-positive (arrows), but only 29.4% are

lamp-GFP-positive. We observed similar results for all guidance

receptors (Figure 3D and 3E and data not shown). Amongst these

receptors, Fas2 exhibited the strongest colocalization with the

early endosomal marker Syx7 both in cell bodies of CNS neurons

in the medulla cortex (arrows in Figure 3D) and at photoreceptor

synapses in the lamina (arrows in Figure 3E). Interestingly, our

high-resolution analyses of subcellular localization revealed a

pattern of increased guidance receptor accumulations on the

outside of large (up to 5 mm) Syx7-positive compartments, as

shown in Figure 3E for Fas2. We made similar observations for

guidance receptor accumulations using two additional genetic

manipulations, namely, increased sorting into endosomal com-

partments and receptor overexpression in v100 mutant neurons, as

described below. In summary, our findings indicate that guidance

receptors accumulate after endocytosis in the compartments most

prominently labeled by early endosomal markers.

Differential Onset of Guidance Receptor Accumulations
in CNS Neurons versus Photoreceptors Correlates with
the Occurrence of Developmental Defects

Why do eyFLPPRonly adult photoreceptors lack a developmental

defect? Photoreceptors conclude axon pathfinding less than 48 h

after differentiation, while many adult CNS neurons adopt the

neural fate many days before brain connectivity is established [38].

v100 mutant neurons exhibit a progressive increase of intracellular

accumulations because of lack of degradation [27]. We reasoned

that in CNS neurons, disruptive intracellular accumulations might

occur sufficiently early during neuronal development to cause

developmental defects. In contrast, in photoreceptors such defects

might occur only after the critical developmental time periods of

axon pathfinding and target recognition. To compare the time

course of intracellular trafficking defects in eyFLPPRonly and

eyFLPCNS, we investigated guidance receptor localization in

developing and adult brains. As shown in Figure 4A and 4B,

optic lobes of eyFLPCNS v100 brains at P+30% exhibit Dlar

accumulations that are absent in eyFLPCNS control brains. To

identify even small changes of Dlar levels in photoreceptors, we

analyzed mutant and neighboring control terminals in MARCM

clones. As shown in Figure 4C, mutant photoreceptors exhibit

Dlar levels indistinguishable from control. In 1-d-old adult

eyFLPCNS optic lobes, Dlar accumulations are further increased

(Figure 4D and 4E), while mutant photoreceptor terminals are just

beginning to show receptor accumulations (Figure 4F). We

observed similar temporal dynamics for the other guidance

receptors, although with varying onset, localization, and severity

of accumulations, as discussed in the next section. Our data show

that guidance receptor accumulations occur in both CNS neurons

and photoreceptors. However, the photoreceptor defects are

delayed and seem to occur sufficiently late to allow normal

development. These observations are consistent with the idea that

cell-specific axonal targeting defects depend on the dynamics of a

progressive degradation and intracellular accumulation defect.

Next, we tested whether the differential onset of Dlar

accumulations in CNS neurons versus photoreceptors reflects a

general degradation problem of transmembrane proteins that

traffic through the endolysosomal system. We analyzed the time

course of lamp-GFP accumulations in developing optic lobe

neurons (eyFLPCNS). In late third instar larvae, lamp-GFP exhibits a

prominent degradation and accumulation phenotype in the v100

mutant CNS (Figure 4G and 4H), while mutant photoreceptors

show almost no lamp-GFP accumulations at this stage (Figure 4I).

However, accumulations do become apparent in photoreceptors at

P+30%, i.e., even before Dlar accumulations become discernible

(Figure 4J; compare to Figure 4C). In summary, accumulations of

lamp-GFP, like accumulations of Dlar, reveal a progressive

intracellular degradation defect that occurs earlier in mutant

CNS neurons than in photoreceptors.

We have previously shown that v100 mutant photoreceptors

have an acidification defect as evidenced by Lysotracker labeling

experiments [27]. Lysotracker is a membrane-permeable dye that

accumulates in highly acidified compartments in cells, i.e.,

lysosomes, late endosomes, and autophagosomes. Larval eye discs

show no difference in Lysotracker uptake in mutant versus control

cells, while pupal eye discs show a 50% reduction in Lysotracker

signal in mutant cells [27]. To characterize the onset of

acidification defects in optic lobe CNS neurons, we generated

GFP-labeled v100 mutant clones as before (eyFLPCNS MARCM). In

control experiments, we used the same approach, except both the

marked and unmarked cells were wild type. As shown in Figure

4K–4M, we found a significant reduction of Lysotracker signal in

mutant CNS neurons of the third instar larva, i.e., at the same

time as when photoreceptors are differentiating and do not yet

exhibit Lysotracker defects. Furthermore, the strength of the larval

CNS defect is reminiscent of photoreceptors at P+40%, i.e.,

approximately 2 d later. As was the case for Dlar and lamp-GFP

accumulations, the observed reduction of Lysotracker-positive

compartments in optic lobe CNS neurons is sufficiently early to

account for the brain wiring defects. In contrast, a similar

reduction of strongly acidified compartments in photoreceptors is

observed only after axon pathfinding and visual map formation

are concluded.

Selective Rescue of v100-Dependent Sorting into
Degradation-Incompetent Compartments Accelerates
Developmental Defects

Our data show that both the accumulation of membrane

proteins and the loss of Lysotracker-positive degradative compart-

ments precede the onset of developmental defects in CNS neurons.

In contrast, our results argue that v100 mutant photoreceptors lack

a developmental defect because endolysosomal defects are

delayed. To test the causality of this correlation, we designed an

experiment to accelerate v100 endolysosomal trafficking defects

and assay the effect on photoreceptor development. We have

previously generated a mutant version of v100 that accelerates and

thereby exacerbates null mutant phenotypes by selectively rescuing

the sorting of cargo into degradation-incompetent compartments.

Selective rescue of the endosomal sorting function but not the

acidification function of v100 is achieved by expressing the mutant

v100R755A in v100 null mutant neurons. In contrast, v100R755A

expression in wild-type neurons has almost no effect since the

wild-type protein is present to acidify degradative compartments

[27].

As shown in Figure 5A and 5B, v100R755A expression in v100

mutant photoreceptors (eyFLPPRonly) leads to axon targeting defects

(arrows in Figure 5A) that are completely absent when v100R755A is

expressed in wild-type neurons, consistent with our previous report

Guidance Receptor Degradation in Brain Wiring
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that v100R755A does not act as a dominant-negative [27]. Similarly,

these developmental defects are not observed in v100 null mutant

photoreceptors or in mutant photoreceptors that are rescued with

wild-type v100 (Figure 1B and 1D). In addition, large amounts of the

photoreceptor-specific transmembrane protein Chaoptin accumu-

late when v100R755A is expressed in mutant neurons (arrow-

head in Figure 5A). These data suggest that v100R755A expression

in mutant neurons accelerates intracellular accumulations and

causes developmental defects in photoreceptors. Next, we assessed

the effect of v100R755A expression on the wiring defect in v100

Figure 4. Differential onset of guidance receptor accumulations in CNS neurons versus photoreceptors correlates with the
occurrence of developmental defects. (A and B) Confocal sections of P+30% optic lobes immunolabeled with Dlar. (A) Control. (B) eyFLPCNS v100.
Insets are magnifications of the boxed regions and reveal Dlar accumulations in the mutant neurons that are absent in control. (C) P+30%
photoreceptor terminals in the first optic neuropil (lamina plexus). 50% of photoreceptors are mutant and marked with GFP (eyFLPPRonly MARCM).
Note that Dlar (magenta, single channel in [C’]) is indistinguishable in mutant and control terminals. The dotted line indicates clonal boundary. (D and
E) Confocal sections of adult optic lobes immunolabeled with Dlar. (D) Control. (E) eyFLPCNS v100. (F) eyFLPPRonly MARCM as in (C) reveals mildly
increased Dlar levels in mutant terminals (single channel in [F’]). The dotted line indicates clonal boundary. (G and H) L3 larval hemispheres of
eyFLPCNS control MARCM (G) and eyFLPCNS v100 MARCM (H). Only cells rendered homozygous for a wild-type chromosome (G) or the v100 mutant
chromosome (H) express lamp-GFP. Note the strong accumulation of lamp-GFP in mutant CNS neurons (arrows). (I) Clone of v100 mutant cells in the
larval eye disc (wild-type cells marked with RFP [magenta]). Single lamp-GFP channel in (I’) and clonal boundary marked with a dotted line. Note that
the mutant cells in the eye disc show only very mild lamp-GFP accumulations. (J) Same as in (I) at P+30%. lamp-GFP accumulations are now
prominent. (K and L) Live Lysotracker labeling of CNS neurons in eyFLPCNS MARCM optic lobes. Cells homozygous for a wild-type chromosome in (K)
and mutant for v100 in (L) are marked with GFP. Dotted lines mark clonal boundaries. Note the reduction of Lysotracker signal in the mutant larval
CNS neurons. (M) Quantification of Lysotracker measurements. Error bars are standard error of the mean; n = 6. Scale bar in (D) for (A, B, D, E, G, and
H): 50 mm; scale bar in (F) for (C and F): 10 mm; scale bar in (I’) for (I and J): 10 mm; scale bar in (K) for (K and L): 10 mm.
doi:10.1371/journal.pbio.1000553.g004
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mutant optic lobe CNS neurons (Figure 5E). Strikingly, v100R755A

causes a dramatically worse wiring defect than the null mutant and

effects a total loss of recognizable neuropil structure (Figure 5C and

5E). Neuronal expression of wild-type v100 fully rescues this defect

(Figure 5D), and no such defect is observed when v100R755A is

expressed in wild-type neurons (Figure 5F).

Figure 5. Selective rescue of v100-dependent sorting into degradation-incompetent compartments accelerates developmental
defects. (A and B) Chaoptin immunolabeling of photoreceptor projections in adult optic lobes. Expression of v100R755A in eyFLPPRonly v100
photoreceptors (A) causes targeting defects (arrows) and Chaoptin accumulations (arrowhead) that are absent when v100R755A is expressed in wild-
type (WT) photoreceptors (B). (C–F) Confocal images of Drosophila optic lobe sections showing a longitudinal section through the first optic neuropil
(lamina) on top and deeper photoreceptor projection below. Green: Chaoptin (photoreceptors); red: V100; blue: Toto-3 (nuclei). Note the targeting
defects in eyFLPCNS v100 in (C), which are dramatically worsened by v100R755A expression in v100 mutant neurons (E). In contrast, pan-neuronal
expression of v100 shows full rescue (D), and v100R755A expression in wild-type CNS neurons causes little or no defect (F). Arrows indicate R7
photoreceptor terminal projections. (G and H) High-resolution confocal sections of 1-d-old adult mosaic eye with wild-type cells to the left and
v100R755A expression in v100 mutant cells to the right (using MARCM). Shown are the boxed regions of the sections shown at lower resolution in
Figure S3A and S3C. Note that the guidance receptors Dlar and Fas2 accumulate both on Syx7-positive compartments (arrows) as well as on the outer
membrane (arrowheads). The dotted lines indicate clonal boundaries. Dlar only in (G’), Fas2 only in (H’), Syx7 only in (G0 and H0). Scale bar in (A) for
(A–F): 20 mm; scale bar in (G) for (G and H): 5 mm. la, lamina; me, medulla.
doi:10.1371/journal.pbio.1000553.g005
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Where do guidance receptors accumulate in neurons with

developmental defects caused by v100R755A-accelerated sorting?

Figure 5G and 5H shows cross-sections through photoreceptor cell

bodies of 1-d-old eyes in which the cells on the right side of the

clonal boundaries are v100 mutant and express v100R755A, while

the neighboring clones on the left side are wild type. In this

experiment the mutant cells are marked with synapto-pHluorin

(green, MARCM), which accumulates in endosomal compart-

ments [27]. As shown for Dlar and Fas2 in Figure 5G and 5H,

guidance receptors exhibit strong accumulations in mutant

photoreceptor cell bodies containing synapto-pHluorin aggregates.

Interestingly, a substantial amount of both Dlar and Fas2 encircles

Syx7 labeling and is found on the plasma membrane of the

dramatically enlarged cell bodies (arrow heads in Figure 5G and

5H) as well as on Syx7-positive compartments (arrows). Very

similar cell body membrane accumulations are observed for the

other guidance receptors (data for Dlar, Rst, and Fas2 in Figure

S3. These observations suggest an endocytic defect of membrane

receptors. While it is at this point unclear whether these endocytic

defects are primary or secondary to an accelerated clog-up or

recycling problem in the endocytic pathway, these observations

clearly show that guidance receptors do not accumulate only in

signaling-incompetent lysosomal compartments. In summary, our

data indicate that accelerated endolysosomal sorting into degra-

dation-incompetent compartments causes guidance receptor

accumulations on plasma and/or endosomal membranes and

accelerates the onset and severity of developmental defects in both

photoreceptors and CNS neurons.

Sorting into Degradation-Incompetent Compartments
Reveals Different Guidance Receptor Turnover Rates

Our observations suggest that accelerated sorting by v100R755A

expression in v100 mutant neurons during brain wiring accelerates

the accumulation of guidance receptors. To test this idea we

analyzed Dlar, N-Cad, Fmi, Fas2, and Rst in v100 mutant

photoreceptors (eyFLPPRonly) with or without v100R755A expression

at P+30%. As shown in Figure 6, none of the guidance receptors

exhibit obvious receptor accumulations either in the developing

eye or at photoreceptor synapses at this developmental time point

in the v100 null mutant (also compare Figure 4C). Very mild

increases are only just discernible for Rst in the developing eye and

for Fmi at synapses (arrows in Figure 6J’ and 6M’). In comparison,

accelerated sorting into degradation-incompetent compartments

(v100R755A in v100) leads to increased accumulations with highly

variable severity and in different parts of the neuron for these five

receptors at P+30%. As shown in Figure 6O, Rst accumulations

are strongly increased in the eye, while N-Cad and Fas2 exhibit

comparably mild increases (Figure 6G and 6S) and Dlar and Fmi

are apparently unaffected in cell bodies in the eye (Figure 6C and

6K). In contrast, at photoreceptor synapses in the same brains,

Fmi is strongly increased (Figure 6L), whereas Rst, Dlar, N-Cad,

and Fas2 show mild or no increased accumulations (Figure 6D,

6H, 6P, and 6T). Since all five guidance receptors analyzed here as

well as other transmembrane proteins including lamp-GFP and

CD8-GFP accumulate in v100 mutant neurons over time

(compare Figures 2 and 4), we conclude that only receptors that

are in the endolysosmal system at a given time in the cell body or

at the synapse are subject to v100R755A-accelerated sorting and

v100-dependent degradation. This interpretation is consistent with

the two strongest effects shown here: Rst plays a key role in

membrane sorting during eye development at P+30%, but is not

yet strongly expressed at synapses [20,39], whereas Fmi plays a key

role in photoreceptor targeting at P+30% [13]. Co-labeling of the

v100R755A-accelerated accumulations of Rst in the eye and Fmi at

synapses with Syx7 reveals many colocalizing accumulations

(Figure S4). The colocalization with the early endosomal marker

is consistent with the findings for both v100 mutant photoreceptors

and CNS neurons (Figures 3C–3E, 5G, and 5H). In summary,

specifically restoring the sorting function of v100 accelerates the

rate of guidance receptor accumulation in developing neurons and

reveals the spatiotemporal dynamics of guidance receptor

turnover.

Guidance Receptors Accumulate in Signaling-Competent
Compartments in v100 Mutant Photoreceptors

Our findings in both photoreceptors and CNS neurons indicate

that guidance receptors accumulate on membranes where they

could potentially exert increased signaling. In particular, the

v100R755A-accelerated sorting leads to accumulations of receptors

both on endosomal compartments and on the plasma membrane.

These findings are not consistent with the idea of accumulations in

signaling-incompetent lysosomal compartments or failed exocytic

membrane delivery. Rather, our data strongly suggest defects

along the endocytic pathway.

To directly test the activity of missorted guidance receptors in

v100 mutant neurons, we designed an experiment to challenge

v100 mutant photoreceptors (eyFLPPRonly) with overexpression of

guidance receptors and other transmembrane cargo. We reasoned

that increased numbers of guidance receptors should lead to

receptor-specific gain-of-function phenotypes that are exacerbated

when v100-dependent sorting and degradation are removed. In

contrast, increased numbers of membrane proteins without

signaling function should not cause developmental defects, even

though they may still accumulate in the same intracellular

compartments. As control transmembrane cargo, we selected

lamp-GFP and myristoylated RFP (myrRFP). Overexpression of

both lamp-GFP and myrRFP leads to pronounced accumulations

in synaptic terminals of eyFLPPRonly v100 mutants, but not in the

synaptic terminals of wild-type photoreceptor neurons (Figure 7A

and 7B). However, even co-overexpression of both transmem-

brane-anchored fluorescent probes in v100 mutant photoreceptors

causes no appreciable developmental defects (Figure 7C and 7D).

We conclude that accumulations of membrane proteins without

signaling function are not sufficient to cause developmental

defects.

In contrast, overexpression of Rst, Fas2, or N-Cad in v100

mutant photoreceptors causes well-defined, strong axon pathfind-

ing or visual map formation defects. Specifically, overexpression

of Rst causes distinct axon fasciculation and pathfinding defects, a

phenotype that is dramatically worsened in a v100 mutant

background (Figure 7E and 7F). In contrast, overexpression of N-

Cad in wild-type photoreceptors does not cause any appreciable

developmental defect, whereas overexpression of N-Cad in v100

mutant photoreceptors causes distinct defects in visual map

formation in the lamina (Figure 7G–7J). This phenotype is very

different from the misrouted axon bundles caused by increased

Rst function. Whereas the Rst-specific fasciculation and pathfind-

ing defects are best shown in the 3-D visualizations of axon

projections in the brain, the visual map formation defect in the

lamina is best demonstrated by the lamina cross-sections shown in

Figure 7G–7J. Similarly, overexpression of Fas2 in wild-type

photoreceptors causes no pathfinding defects, but a highly specific

sorting defect of synaptic terminals in the lamina (i.e., a specific

visual map formation defect; 11% of synaptic cartridges contain

more than eight or less than four terminals, compared to ,1% in

wild type), and this Fas2-dependent phenotype is substantially

worsened in a v100 mutant background (23% of synaptic

cartridges contain less than four or more than eight terminals;
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Figure 7K and 7L). In contrast, loss of Fas2 in photo-

receptors causes no obvious defects in axon targeting or visual

map formation (data not shown). These results show that

overexpression of guidance receptors, but not membrane-tagged

fluorescent probes without signaling function, causes specific

developmental defects that strongly suggest exacerbated gain-of-

function phenotypes.

Our findings are consistent with the idea that both guidance

receptor overexpression and increased receptor sorting into

degradation-incompetent compartments lead to developmental

Figure 6. Sorting into degradation-incompetent compartments reveals guidance-receptor-specific turnover rates. Confocal images of
developing eye discs and laminae at P+30% using eyFLPPRonly MARCM. GFP-marked cells in the four left columns are mutant for v100. GFP-labeled
cells in the four columns on the right express v100R755A in a v100 mutant background. Unlabeled cells are wild-type control in all panels. (A–D)
Immunolabeling of Dlar (magenta). Neither loss of v100 (A and B) nor accelerated sorting in degradation-incompetent compartments (C and D)
causes obvious Dlar accumulations at P+30% either in the eye (A and C) or at photoreceptor terminals (B and D). Single channels of Dlar
immunolabeling shown in (A’–D’). (E–H) Same as (A–D), except immunolabeling of N-Cad (magenta). Note that accelerated sorting into degradation-
incompetent compartments with v100R755A leads to mild N-Cad accumulations in the developing photoreceptor cell bodies (G). (I–L) Same as (A–D),
except immunolabeling of Fmi (magenta). Note the strong accumulation of Fmi selectively at photoreceptor terminals expressing v100R755A in mutant
photoreceptors (L). (M–P) Same as (A–D), except immunolabeling of Rst (magenta). Note the strong accumulation of Rst selectively in the cell bodies
of the developing eye (O). (Q–T) Same as (A–D), except immunolabeling of Fas2 (magenta). Note the strong accumulation of Fas2 selectively in the
cell bodies expressing v100R755A in (S). Quantification for experiments marked with red boxes: (G) N-Cad shows a 1.24-fold increase (60.04) in mutant
cells compared to control, (L) Fmi shows a 1.47-fold increase (60.25), (O) Rst shows a 2.18-fold increase (60.50), and (S) Fas2 shows a 1.81-fold
increase (60.11). Scale bar in (A) for all eye sections: 10 mm; scale bar in (B) for all lamina sections: 10 mm.
doi:10.1371/journal.pbio.1000553.g006
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defects because of increased guidance receptor activity. Indeed,

both genetic manipulations lead to increased colocalization of

guidance receptors with the early endosomal Syx7, as shown for

Fas2 in Figure S5. Taken together with the finding of early

accumulations of guidance receptors on endosomal compartments

in v100 mutant CNS neurons, our findings support the idea that

brain wiring defects in the adult CNS result at least partially from

increased guidance receptor activity.

V100-Dependent Guidance Receptor Accumulations
Cause Gain-of-Function Defects in the Embryo

To further test the idea that v100-dependent accumulations of

guidance receptors lead to increased receptor signaling we turned

to the Drosophila embryonic nervous system. Drosophila embryonic

motor axons have long provided a simple in vivo model for

characterizing axon guidance molecules [7,40], since individual

axons can be followed to their targets and phenotypes that

result from increased signaling can often be differentiated from

loss-of-function defects (e.g., [19,33,41,42]). The discovery of the

progressive v100-dependent neuronal degradation mechanism

makes clear predictions for guidance receptor sorting in the

embryonic nervous system. Specifically, we propose that 24 h of

embryonic development is not sufficient to lead to aberrant

receptor function. However, both accelerated sorting into

degradation-incompetent compartments (v100R755A in v100) as

well as guidance receptor overexpression in v100 mutant neurons

should accelerate the occurrence of receptor-specific phenotypes

similar to the effects shown for photoreceptors. To test this

Figure 7. Guidance receptors accumulate in signaling-competent compartments in v100 mutant photoreceptors. (A and B) Adult
lamina cross-sections of control (A) and eyFLPPRonly v100 photoreceptor terminals (R1–R6). (B) Photoreceptor-specific expression of myristoylated RFP
(red) and Lamp-GFP (green); blue: Syx7. (C and D) 3-D visualizations of R7 and R8 axonal projections of Chaoptin-labeled photoreceptors mutant for
v100 and co-overexpressing both myrRFP and Lamp-GFP. Note that both proteins strongly accumulate, but do not cause developmental defects.
Single channel in (C). (E and F) 3-D visualizations of photoreceptor projections expressing the guidance receptor Rst in wild-type photoreceptors (E)
and v100 mutant photoreceptors (F). The increase in axon fasciculations and pathfinding defects is a specific exacerbation of the Rst gain-of-function
phenotype. (G–L) Confocal images of adult lamina cross-sections labeled with Chaoptin (R1–R6 photoreceptors, green), Sec6 (interneurons, red), and
Ebony (glia, blue). Control (G) and eyFLPPRonly v100 (H) show normal lamina structure. Photoreceptor-specific expression of the guidance receptor N-
Cad has no effect in control (I) but disrupts pattern formation in v100 mutant photoreceptors (J). Fas2 expression causes mild developmental defects
in control (K) that worsen in the mutant (L). Ebony only in (G’–L’). Scale bar in (A) for (A and B): 10 mm; scale bar in (C) for (C–F): 50 mm; scale bar in (G)
for (G–L): 5 mm.
doi:10.1371/journal.pbio.1000553.g007
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hypothesis, we analyzed axon pathfinding and guidance receptor

sorting in the embryo. The guidance receptor Fas2 not only plays

a critical role in axon pathfinding, but also is one of the most

commonly used markers to analyze pathfinding, branching, and

fasciculation defects in the embryonic nervous system [40].

Furthermore, the Drosophila embryonic nervous system has been

used as a model to differentiate the effects of increased versus

decreased Fas2 signaling [19,33,43]. As shown in Figure 8A and

8B, Fas2-positive ISNb axons reveal no statistically significant

guidance defects in null mutant embryos (blue bar in Figure 8D).

In contrast, accelerated sorting into degradation-incompetent

compartments (v100R755A in v100) leads to statistically significant

axon guidance defects (Figure 8C; red bar in Figure 8D).

Interestingly, these phenotypes are indicative of increased axon-

axon fasciculation, a phenotype that is known to result from

increased Fas2 signaling in axons [33]. As shown in Figure 8H,

Fas2 immunolabeling is significantly increased in v100R755A-

‘‘rescued’’ embryos. Furthermore, co-labeling with the early

Figure 8. V100-dependent guidance receptor accumulations cause gain-of-function defects in the embryo. (A–C, E and F)
Photomicrographs of filleted Drosophila embryos stained with the motor axon marker 1D4 (anti-Fas2) where normal innervation (arrows), abnormal
innervation (white arrowheads), and increased axon-axon fasciculation ‘‘bypass’’ defects (large black arrowheads) are demarcated. (A–C) Motor axons
within the ISNb axon pathway innervate muscles 6 and 7 normally in control (elav-Gal4 only) (A) and v100 (B) embryos but show abnormal guidance
and targeting in elav. v100R775A; v100 (C) embryos. Boxed regions are shown at higher magnification (A’-C’) and are also depicted schematically (A0–
C0). (D) The percentage (%) of abnormal muscle 6/7 innervation is shown (normalized to control levels; n.60 hemisegments/genotype) and reveals a
statistically significant increase in guidance defects when there is accelerated sorting into degradation-incompetent compartments (v100R775A is
expressed in the v100 mutant background). (E–G) ISNb motor axons were examined in embryos expressing one copy of the Fas2 transgene in all
neurons in either a wild-type (E) or a V100 mutant (F) background, and the results reveal that loss of v100 increases the percentage (%) of abnormal
Fas2-mediated ISNb axonal fasciculation events (bypass with the ISN or stall phenotypes; [33]; n.140 hemisegments/genotype). (H) Quantification of
Fas2 fluorescence in the embryo for the data shown in Figure S6A–S6C. Note that this panel is identical to the one in Figure S6G. a.u., arbitrary units.
(I) Quantification of detergent-free immunolabeling of extracellular guidance receptor DPTP69D at the neuromuscular junction. See also images in
Figure S7. Asterisks denote statistical significance with p,0.01. Scale bar in (E) for(A–C, A’–C’, E, and F): 10 mm. Error bars are standard error of the
mean; p-value by Student’s t test.
doi:10.1371/journal.pbio.1000553.g008
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endosomal marker Syx7 reveals increased accumulations of Fas2

in degradation-incompetent compartments (v100R755A in v100) of

embryonic neurons (Figure S6A–S6C, S6G, and S6H). Similar to

v100R755A expression in v100 mutant neurons, overexpression of

Fas2 in v100 mutant neurons leads to significantly enhanced gain-

of-function fasciculation defects compared to Fas2 overexpression

in v100 heterozygous or wild-type neurons (Figure 8E–8G). These

results reveal that the V100-dependent degradation pathway

regulates the levels of Fas2 in neurons in both the Drosophila visual

and embryonic systems, and strongly argue that these v100-

dependent accumulations lead to increased Fas2 signaling.

Interestingly, certain aspects of embryonic nervous system

development and axon pathfinding remain largely unaffected.

For example, midline crossing, which is partly regulated by the

Slit-Robo system [44], is mostly resistant to v100R755A-accelerated

receptor sorting (with only low-penetrance defects). Similarly,

v100R755A-accelerated receptor sorting does not enhance Sema-

1a/PlexA–mediated repulsive signaling at the midline (data not

shown; [45]). However, analysis of Robo1 receptor expression

reveals mild accumulations in the ventral ganglion that are

increased by v100R755A expression (Figure S6D–S6F, S6I, and

S6J). These findings are consistent with our observation that

v100R755A expression in v100 mutant neurons reveals spatiotem-

porally specific turnover rates of guidance receptors. A straight-

forward explanation for the lack of midline crossing defects is that

loss of degradation does not lead to aberrant Robo signaling

within the time frame of embryonic development.

Finally, the embryonic nervous system allows us to directly test

in the v100 mutant whether guidance receptors are successfully

trafficked to the membrane surface through the secretory pathway.

We made embryonic filet preparations in which axons are directly

accessible to antibody washing solutions in the absence of

detergent. Since the Fas2 immunohistochemistry antibody is

specific to the intracellular domain, we tested this idea with an

antibody against the extracellular domain of the guidance receptor

DPTP69D, which functions in ISNb axon pathfinding similarly to

Fas2, at the same time and place [46]. As shown in Figures 8I and

S7, this receptor exhibits slightly increased levels of expression on

the axon membrane surface in v100 mutant and v100R755A-

‘‘rescued’’ neurons compared to control. Taken together, our

analysis of v100-dependent receptor sorting in the embryonic

nervous system fully supports our results in photoreceptors and

adult brain CNS neurons. Specifically, these results highlight that

numerous guidance receptors are subject to the v100-dependent

‘‘sort-and-degrade’’ mechanism, that receptor trafficking defects

are downstream of receptor secretion in the endosomal pathway,

and that increased levels of guidance receptors lead to exacerbated

gain-of-function defects.

Discussion

In this paper, we show that loss of a neuron-specific v-ATPase-

dependent degradation mechanism leads to brain wiring defects in

Drosophila. Neurons mutant for the v-ATPase V0 subunit a1, v100,

progressively accumulate degradation-incompetent compartments

that contain multiple classes of guidance receptors. Both

accelerated sorting into degradation-incompetent compartments

and overexpression of guidance receptors in v100 mutant neurons

lead to increased receptor accumulations on signaling-competent

membranes and accelerate developmental defects in photorecep-

tors and embryonic motor neurons. However, only accumulations

of guidance receptors, but not transmembrane proteins without

signaling function, lead to specifically exacerbated gain-of-function

defects. Hence, our results indicate that block of v100-dependent

degradation can lead to the accumulation of guidance receptors in

signaling-competent compartments. We conclude that in the

Drosophila CNS, v100-dependent receptor degradation is required

during development for the cell to spatiotemporally control

guidance receptor signaling, which is in turn necessary for

neuronal connectivity in the brain. Our findings suggest that

continuous turnover and degradation is a general mode of

guidance receptor regulation that sets the stage for other

trafficking mechanisms that instructively regulate guidance

receptor localization and signaling.

The Role of v100-Dependent Intracellular Trafficking in
Neuronal Development

Membrane trafficking underlies the growth and remodeling of

axonal and dendritic branches. However, the loss of v100-

dependent endolysosomal trafficking presented here has no

apparent effect on membrane addition and remodeling. Instead,

we identified a role for v100 in intracellular receptor trafficking.

Intracellular trafficking and the v-ATPase are known to play

critical roles in the dynamic localization and signaling of a

plethora of transmembrane receptors [47,48]. Receptors may

signal from the plasma membrane or may be endocytosed to exert

a signaling function [5]. A prominent example in neuronal

development is the regulation of cellular differentiation by

endocytosis of the Notch ligand Delta [49]. However, loss of

v100 causes no early developmental defects, and v100 is therefore

not required for the regulation of receptor-mediated signaling that

governs cellular differentiation and early tissue patterning. In

contrast, we report that CNS neurons of the developing adult

brain exhibit axon pathfinding and synaptic specification defects.

Our findings indicate that V100 has a specialized task in neurons

and has no function in the essential endolysosomal machinery

required for early development. In contrast, the loss of key

subunits of the V1 complex of the v-ATPase (which is probably

required for all v-ATPase function) cause cell lethality. Specifically,

eyFLP vha55 and eyFLP vha68 lead, in stark contrast to eyFLP v100,

to an abolishment of the eye (P. R. H, unpublished data).

The v100 mutant phenotypes are most similar to those of two

other intracellular trafficking mutants that we have described

before, n-syb mutants and sec15 mutants. Loss of n-syb, the gene

that encodes the vesicle SNARE neuronal Synaptobrevin, leads to

guidance receptor accumulations and synaptic specificity defects in

the Drosophila visual system [50]. sec15 encodes a component of the

Exocyst complex required for neuronal targeting or secretion

functions other than neurotransmitter release. Similar to loss of n-

syb, loss of sec15 leads to mislocalization of guidance receptors and

photoreceptor targeting defects [29]. These findings represent

mounting evidence for the employment of neuronal intracellular

trafficking machinery during brain wiring. However, the neuronal

degradation function presented here for v100 differs from the

earlier findings for n-syb and sec15, in that loss of v100 does not lead

to targeting or ‘‘tiling’’ defects in the photoreceptor terminal field.

Curiously, the guidance receptors most prominently affected by

loss of either n-syb or sec15 are Fas2 and Dlar, while N-Cad and

Fmiare not affected in sec15 mutant photoreceptors [29]. In

contrast, all these guidance receptors are affected by loss of v100 in

CNS neurons. We interpret these differences in the context of

differing molecular functions: while loss of sec15 may lead to

targeting defects of a subpopulation of neuronal vesicles required

for guidance receptor localization, loss of v100 disrupts general

receptor turnover downstream of the secretory pathway in

neurons. This disruption could be partly due to ‘‘clog-up’’ of the

endolysosomal pathway or due to defective endosomal recycling.
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Our challenge experiments using guidance receptor overex-

pression in v100 mutant photoreceptors and embryonic motor

neurons are similar to Wingless overexpression experiments in

intracellular degradation mutants. Dubois et al. [51] showed that

Wingless is targeted to lysosomes and is continuously and

specifically degraded posterior to each stripe of Wingless

transcription. Disruption of lysosomal degradation leads to

Wingless accumulations and, together with Wingless overexpres-

sion, ectopic signaling [51]. Similarly, we find that guidance

receptors undergo constant turnover (see discussion in the next

section) and that their overexpression in v100 mutant neurons

leads to ectopic signaling. For example, N-Cad overexpression in

wild-type photoreceptors, analogous to the Wingless experiments,

does not cause obvious defects. In contrast, N-Cad overexpression

in v100 mutant photoreceptors causes gain-of-function pheno-

types. Similarly, overexpression of low levels (one copy) of Fas2

causes only very mild fasciculation defects in embryonic motor

neurons [33]. In contrast, the same level of Fas2 overexpression in

v100 mutant neurons causes a phenotype very similar to high

levels of Fas2 overexpression (two copies) [33]. These observations

strongly suggest increased gain-of-function phenotypes and are not

consistent with loss-of-function phenotypes for these receptors.

However, these findings do not exclude the possibility that parts of

the compound brain wiring defects in eyFLPCNS v100 mutants are

due to loss of function for other proteins affected by v100-

dependent sorting.

Importantly, v100 is a neuron-specific gene, and its loss does not

lead to hallmark phenotypes of general lysosomal degradation

mutants, including autofluorescent lipofuscin or ceroid accumula-

tions or aberrant multilamellar lysosomal organelles [27,52,53].

Hence, V100 provides a neuronal degradation mechanism

specifically required after differentiation for late brain develop-

ment and neuronal maintenance.

The Role of Receptor Turnover during the Establishment
of Synaptic Specificity

How guidance receptors are dynamically localized is unknown

for most receptors. Several guidance receptors are known to be

regulated by intracellular trafficking. Sema3A-induced endocytosis

of Neuropilin-1 has been shown to be required for growth cone

collapse during axon guidance [54]. Similarly, internalization of

UNC-5A prevents UNC-5A-mediated growth cone collapse in

hippocampal axon guidance [55]. One of the best characterized

examples of intracellular dynamic sorting is the guidance receptor

Robo [44,56,57]. During embryonic nervous system development

certain axons are prevented from crossing the midline by a

repellent guidance cue that binds to the Robo receptor. During a

short time window, Robo is removed from the plasma membrane

and the axon crosses the midline exactly once. Thereafter, Robo

receptors return to the membrane and prevent the axon from

crossing again. Remarkably, this dynamic relocalization of the

Robo receptor is achieved by diverting a continuous supply of

receptors from the endoplasmic reticulum/Golgi temporarily into

the endolysosomal pathway for degradation by means of the

intracellular sorting receptor Comm. Hence, the dynamic

membrane presentation of Robo receptors on the growth cone is

not regulated by endo- and exocytosis of a fixed amount of

receptors. Instead, the regulation occurs via an intracellular sorting

receptor, revealing a strategy that relies on constitutive synthesis

and degradation of receptors that can be sorted to exert

spatiotemporally defined functions. Notably, the proposed diver-

sion of Robo receptors into degradative compartments is only very

short. Indeed, we observe a mild increase of Robo accumulations

in embryonic neurons. However, the lack of developmental defects

suggests that these accumulations are not sufficient to cause

aberrant signaling. We propose that loss of v100-dependent

degradation leads to only a slow build-up of undegraded receptors,

and 24 h of embryo development is not sufficient to lead to

neuronal connectivity defects.

The role of v100 in guidance receptor turnover is most strikingly

highlighted by the selective rescue of v100-dependent sorting into

degradation-incompetent compartments. Rescue of the sorting

function, without rescue of acidification-dependent degradation,

leads to a dramatically accelerated accumulation of endogenously

expressed guidance receptors. Interestingly, these accumulations

are increased compared to the v100 null mutant. Hence, V100

actively promotes vesicle sorting into endosomal compartments

destined for degradation. In addition, we observe accumulations of

guidance receptors on the plasma membrane. While we cannot

exclude a primary defect in endocytosis, a secondary effect due to

clog-up of the endolysosomal system or endosomal recycling

defects seems more likely. In either case, these observations clearly

show that guidance receptors do not exclusively accumulate in

signaling-incompetent compartments. In addition, the absence of

early developmental defects indicates, and our staining of

DPTP69D in the embryo demonstrates, functional guidance

receptor exocytosis.

Our findings reveal several key features of v100-dependent

‘‘sort-and-degrade.’’ First, in the complete absence of v100-

dependent sorting and degradation, this turnover is at least

partially taken over by a v100-independent degradation pathway.

This interpretation is consistent with our previous model, in which

V100 acts in parallel to an essential endolysosomal pathway that

ensures cellular differentiation and viability [27]. Second, the

progressive nature of the ‘‘sort-and-degrade’’ mechanism is similar

in all different types of neurons analyzed here. We conclude that

the occurrence of neuronal connectivity defects is a function of the

duration between neuronal differentiation and synaptic specifica-

tion. Third, these experiments reveal that guidance receptors are

subject to a constant turnover. Indeed, combined measurement of

guidance receptor accumulation in v100 mutant neurons and

v100R755A-‘‘rescued’’ neurons is a tool to assess the turnover rate of

different guidance receptors. The idea that there is constant

turnover is supported by the observation of different accumulation

kinetics for several guidance receptors investigated here. For

example, our experiments at P+30% reveal high Rst turnover in

the developing eye but not at synapses, high Fmi turnover at

synapses but not in the eye, and very little Dlar turnover at this

developmental time point. Taken together, our findings suggest

that v100-dependent ‘‘sort-and-degrade’’ is required for guidance

receptor turnover, and its manipulation is a method to assess

receptor turnover at different time points.

Materials and Methods

Drosophila Strains and Conditions of Culture
y w; P(ry+ = neo FRT82B) isogenized flies were used as control

animals. v100 null mutant and overexpression lines have

previously been described [24]. Allele v1004 was the mutant allele

used in all experiments. All further fly strains are described in

detail below. Flies were reared at room temperature, except for

pupal staging experiments, where flies were reared at 25uC
(P+100% corresponds to 103 h).

Mosaic Analyses
For photoreceptor-specific mosaics (eyFLPPRonly) [28,29] the base

genotype is ey3.5FLP;;FRT82B,v100/FRT82B,cl,w+. For optic

lobe CNS neuron clones (eyFLPCNS) [11] the base genotype is
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eyFLP;;FRT82B,v100/FRT82B,cl,w+. In order to express differ-

ent reporters in either photoreceptors or all neurons, the following

flies were generated. (1) For eyFLPPRonly: ey3.5FLP;GMR-

Gal4,(X*); FRT82B,v100/FRT82B,cl. (2) For eyFLPCNS: eyFLP,

elav-Gal4;(X*); FRT82B,v100/FRT82B,cl. (X*) stands for one of

the following UAS constructs: UAS-myr-RFP, UAS-Lamp-GFP,

UAS-N-Cad, UAS-Fas2, UAS-Rst, UAS-v100, or UAS-v100R755A.

In addition, we generated a chromosome that contains both UAS-

myrRFP and UAS-Lamp-GFP. v100R755A overexpression and

control experiments were done at 18uC, because higher levels of

v100R755A expression in v100 mutant neurons cause cell death [27].

We used several variations of the MARCM technique [35] to

generate positively marked clones with or without the expression

of additional reporters or rescue constructs. In these flies, the

FRT82B,cl,w+ was replaced with FRT82B,tub-Gal80. The

following flies were generated. (1) For eyFLPCNS: eyFLP,elav-

Gal4;(X*);FRT82B,tub-Gal80/FRT82B,v100. (2) For eyFLPPRonly:

ey3.5FLP; (Y*); FRT82B,tub-Gal80/FRT82B,v100. (X*) stands for

one of the following UAS constructs: UAS-Lamp-GFP [37], UAS-

pHluorin [58], or UAS-2xFYVE-GFP [36]; (Y*) stands for

recombined chromosomes containing GMR-Gal4 and UAS-

Lamp-GFP, UAS-pHluorin, or UAS-2xFYVE-GFP.

The following genotype was used to negatively mark clones with

RFP: ey3.5FLP;GMR-Gal4,UAS-Lamp; FRT82B,UAS-RFP/

FRT82B,v100.

Lysotracker Live Imaging
For Lysotracker experiments, brains were removed from third

instar lavae and were immobilized on a Sylgard-coated micro-

scope slide using glue stitch. The membrane surrounding the optic

lobe was carefully torn so that Lysotracker could enter.

Lysotracker Red was added to HL3 at 50 nM. Then 200 ml of

this solution was placed onto the prepared tissue, and an image

was acquired within 5 min, as recommended by the manufacturer

to prevent alkalizing effects. Live imaging was performed as

described previously [59].

Immunohistochemistry, Microscopy, and Image
Processing

Dissections were performed as described previously [59]. Brains

were fixed in phosphate buffered saline (PBS) with 3.5%

formaldehyde for 40–50 min and washed in PBS with 0.4%

Triton X-100. High-resolution light microscopy was performed

using the a Leica SP5 resonance scanning confocal microscope.

Imaging data were processed and quantified using Amira 5.2

(Indeed) and Adobe Photoshop CS4. Fluorescence data were

quantified using GraphPad Prism 4. The following antibodies were

used at 1:1,000 dilution: anti-activated Caspase-3, Dlg, Syx7/Avl,

Rab7, Sun/CD63, and Syt. Brp (mAb nc82), Chaoptin (mAb

24B10), N-Cad (mAb DNEx8), Rst (mAb 24A5), Flamingo (mAb

#74), and Fas2 (mAb 1D4) were used at 1:50. Guinea pig anti-

V100 was used at 1:2,000. All embryonic immunostaining and

assessment of motor axon guidance was done using standard

approaches [42] such that whole-mount embryos were fixed,

washed in PBS containing 0.1% Triton X-100, and incubated in

antibodies to Fas2 (1:4, 1D4 supernatant, [60]). Brightfield and

DIC visualization and imaging were done using a Zeiss

Axioimager upright microscope, and images were captured using

a Zeiss Axiocam HR camera and Zeiss Axiovision software.

Supporting Information

Figure S1 The eyFLP system generates mutant CNS
neurons selectively in the visual and olfactory systems.

(A) Whole-mount adult brain. MARCM analysis labeling 50% of

all cells affected by eyFLP [11] with GFP (arrowheads). Red:

Chaoptin immunolabeling of only the photoreceptors (arrows).

These are the cells rendered mutant by the ey3.5FLP method

[28,29]. (B) P+40% pupal eyFLP brain in which heterozygous cells

are negatively marked with GFP. Note that the nuclear label Toto-

3 (red) is only visible in the absence of GFP (arrowheads). (C)

Schematic of the optic lobes in the Drosophila brain. Lamina and

photoreceptor projections are shown in red, medulla in green, and

the lobula complex (composed of lobula and lobula plate) in

yellow.

Found at: doi:10.1371/journal.pbio.1000553.s001 (1.79 MB TIF)

Figure S2 Loss of v100 does not cause apoptosis during
development or early adulthood. Activated Caspase-3

labeling of developing (A and B) and 10-d-old (C) optic lobes. (A

and B) Immunolabeling of Caspase-3 (red) in P+15% wild-type (A)

and eyFLPCNS v100 (B) optic lobes reveals no difference in cell

death between mutant and control. Green: N-Cad (developing

neuropil); blue: Toto-3 (all nuclei). ([A’] and [B’] show Caspase-3

channel only.) (C) Confocal section of the optic lobe cell bodies of

a 10-d-old eyFLPCNS v100 MARCM brain. Mutant cell are marked

with GFP; Caspase-3 immunolabeling is in red. ([C’] shows

Caspase-3 channel only.) Scale bar in (B) for (A and B): 20 mm.

Scale bar in (C): 5 mm.

Found at: doi:10.1371/journal.pbio.1000553.s002 (3.92 MB TIF)

Figure S3 v100R755A expression causes heterogeneous
guidance receptor accumulations on Syx7-positive mem-
branes and the plasma membrane. Confocal sections of 1-d-

old mosaic eyes in which 50% are mutant for v100 and express

v100R755A (MARCM), while the other 50% remain wild-type.

Approximate clonal boundaries are shown with dotted lines.

Immunolabeling for the guidance receptor Dlar is shown in (A),

for Rst in (B), and for Fas2 in (C). The boxed regions in (A) and (C)

are shown at higher resolution in Figure 5G and 5H. Scale bar in

(A) for (A–C): 10 mm.

Found at: doi:10.1371/journal.pbio.1000553.s003 (4.10 MB TIF)

Figure S4 Overexpression of guidance receptors in v100
mutant photoreceptors leads to accumulations that
partly colocalize with Syx7-positive compartments. As

shown in Figure 6, at P+30% the guidance receptor Rst exhibits

the most prominent accumulations in the developing eye, whereas

the guidance receptor Fmi exhibits the most prominent accumu-

lations in photoreceptor terminals. (A) Rst accumulations in the

developing eye often partially colocalize with accumulations of the

endosomal protein Syx7 (arrows). (B) Accumulations of Fmi in

developing photoreceptor terminals also often partially colocalize

with Syx7. Scale bar in (A) for (A and B): 5 mm.

Found at: doi:10.1371/journal.pbio.1000553.s004 (1.74 MB TIF)

Figure S5 Overexpression of v100R755A or the guidance
receptor Fas2 causes a similar increase of Fas2 accu-
mulations that colocalize with Syx7-positive endosomal
accumulations. Confocal cross-sections of 1-d-old photorecep-

tor terminals in the lamina are shown. Genotypes are shown on

the left. (A) Loss of v100 leads to heterogeneous accumulations of

Fas2 that partially colocalize with the endosomal marker Syx7,

albeit rarely. (B) Selective rescue of endosomal sorting with

v100R755A expression in v100 mutant neurons leads to an increase

of Fas2 accumulations that colocalize with Syx7-positive accumu-

lations. (C) Overexpression of Fas2 in v100 mutant neurons leads

to an increase of Fas2 accumulations that colocalize with Syx7-

positive accumulations. Scale bar in (A) for (A–C): 5 mm.

Found at: doi:10.1371/journal.pbio.1000553.s005 (4.66 MB TIF)
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Figure S6 Guidance receptors accumulate in Syx7-
positive compartments in the embryonic nervous sys-
tem. (A–C) Co-immunolabeling for Fas2 and Syx7 of the ventral

ganglion, with cell bodies to the left. Control (elav-Gal4 only) (A),

v100 null mutant (v1004/Def) (B), and elav-Gal4.v100R755A;v100/

Def (C). (D–F) Same as (A–C) except with Robo immunolabeling

instead of Fas2. (G) Total Fas2 immunofluorescence; same panel

as in Figure 8H. (H) Number of colocalizing pixels for Fas2 and

Syx7 for all three genotypes. (I and J) Same as (G and H) but for

Robo immunolabeling. In all cases three independent 3-D

confocal datasets were quantified. Scale bar in (A) for (A–F): 1 mm.

Found at: doi:10.1371/journal.pbio.1000553.s006 (4.51 MB TIF)

Figure S7 Immunolabeling of extracellular DPTP69D
reveals no defect in receptor exocytosis. Confocal sections

of embryonic neuromuscular junctions are shown for control (elav-

Gal4) (A), v100 mutant (B), and neuronal v100R755A expression in

v100 mutant embryos (C). (A’–C’) Horseradish peroxidase co-

labeling to identify neuromuscular junctions. (A0–C0) DPTP69D

channel only. The quantification of this data is shown in Figure 8I.

Scale Bar in (A) for (A–C): 10 mm.

Found at: doi:10.1371/journal.pbio.1000553.s007 (1.58 MB TIF)
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