
The Rockefeller University Press
J. Cell Biol. Vol. 203 No. 2  171–173
www.jcb.org/cgi/doi/10.1083/jcb.201309130 JCB 171

JCB: Comment

Vesicular H+-ATPases (V-ATPases) function as ATP-driven pro-
ton pumps in intracellular compartments, such as endosomes, 
Golgi-derived vesicles, secretory vesicles, synaptic vesicles,  
lysosomes, and vacuoles (Forgac, 2007). Acidification is impor-
tant for a plethora of cell biological processes ranging from  
endosomal ligand–receptor dissociation to lysosomal degrada-
tion (Yan et al., 2009; Williamson et al., 2010; Zoncu et al., 
2011). Consequently, interfering with V-ATPase function leads 
to direct and indirect defects that are difficult to tease apart. In 
addition, acidification-independent roles of the V-ATPase in  
secretion and membrane fusion have been proposed (Israël et al., 
1986; Peters et al., 2001; Morel et al., 2003; Hiesinger et al., 
2005; Liégeois et al., 2006; Sun-Wada et al., 2006; Peri and 
Nüsslein-Volhard, 2008). The difficulty to distinguish conse-
quences of an acidification-independent mechanism from indi-
rect effects of acidification defects is exacerbated by an unclear 
dependence of secretion on acidification (Cousin and Nicholls, 
1997; Ungermann et al., 1999; Hiesinger et al., 2005).

In synaptic vesicles, the V-ATPase generates a proton gra-
dient that is used by an antiporter to fill synaptic vesicles with 
neurotransmitter. Hence, loss of acidification leads to “empty” 
synaptic vesicles and loss of neurotransmitter release. Can such 
vesicles still fuse and thereby “shoot blanks”? The V-ATPase 
comprises of two sectors that can reversibly dissociate: the cy-
tosolic V1 sector and the membrane-bound V0 sector. Loss of 
the neuronal a1 subunit of the V0 sector (V0a1) leads to almost 
complete loss of neurotransmission in Drosophila melanogaster—
a phenotype that may result from a defect in neurotransmitter 
loading or exocytosis (Hiesinger et al., 2005). Single vesicle  
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release events in the V0a1 mutant revealed a quantal postsynap-
tic response, suggesting that at least some vesicles are loaded. 
In addition, loss of V0a1 impairs synaptic vesicle cycling in an 
FM1-43 dye uptake assay, whereas pharmacological block of the 
V-ATPase with bafilomycin causes no significant defect in this 
assay (Hiesinger et al., 2005). These findings supported previous 
studies of an acidification-independent role of the yeast V0 sec-
tor and specifically the V0a1 orthologue vph1 in vacuole fusion 
(Peters et al., 2001; Bayer et al., 2003). They also support earlier 
controversial implications of the V-ATPase V0 sector in neu-
rotransmitter release (Israël et al., 1986). More recently, numer-
ous studies have added evidence in worm, fish, fly, and mouse for 
possible acidification-independent roles of various V-ATPase V0 
subunits in secretion or membrane fusion (Bayer et al., 2003; 
Lee et al., 2006; Liégeois et al., 2006; Sun-Wada et al., 2006; Peri 
and Nüsslein-Volhard, 2008; Di Giovanni et al., 2010; Williamson 
et al., 2010; Strasser et al., 2011). However, questions about the 
relationship of V-ATPase–dependent acidification and the ob-
served secretion or membrane fusion defects remained. How can 
one cleanly separate between two protein functions if one poten-
tially depends on the other? The study of V0a1 has been compli-
cated by the finding that it is not only a synaptic vesicle protein 
but also localizes to other organelles. Consequently, specific dis-
ruption of the acidification function of V0a1 led to endolyso-
somal acidification defects, even though it partially restored 
neurotransmission (Williamson et al., 2010). A better dissection 
of the two possible functions is needed.

In this issue of JCB, Poëa-Guyon et al. provide compel-
ling evidence for two separable functions of V0a1 in acidification 
and exocytosis. Instead of a genetic dissection, they opted for an 
elegant temporal dissection with the idea that acute inactivation 
of a function of V0a1 in exocytosis should instantly block neuro-
transmission, whereas acute inactivation of the proton pump 
should leave neurotransmission functional as long as loaded vesi-
cles are available. Indeed, Poëa-Guyon et al. (2013) found a fast 
disruption of secretion in both primary rat neuronal culture and 
chromaffin cells when they acutely inactivated V0a1 using chro-
mophore-assisted light inactivation. In contrast, inactivation of 
the reversibly associated V1 sector revealed very different effects 
than what would be expected from a loss of the proton pump.
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implies that the V0–V1 association itself prevents exocytosis. 
Pharmacological V0–V1 dissociation seems sufficient to expose 
V0 and exert a V1-independent function in exocytosis. This 
conclusion is consistent with previous findings in which the 
same pharmacological inhibition of the V-ATPase was found to 
leave exocytosis and endocytosis intact (Cousin and Nicholls, 
1997; Hiesinger et al., 2005). However, the interpretation of 
the data changes: according to the new findings, exocytosis does 
not depend on vesicle acidification, per se, but on V0–V1 asso-
ciation that results from lack of acidification. Acidification and 
V-ATPase assembly thereby become a checkpoint for vesicle 
loading, and the assembled V-ATPase becomes a no-go signal 
for fusion (Fig. 1). The model is elegant and leads Poëa-Guyon 
et al. (2013) to suggest the V-ATPase as an acidification sensor, 
similar to previous observations (Hurtado-Lorenzo et al., 2006). 
However, whether it is really the V-ATPase itself that senses the 
proton gradient is not directly assessed in this study.

How general is the V-ATPase checkpoint, and what is the 
mechanism of V0-mediated, acidification-independent exocyto-
sis? Both questions remain unanswered. The checkpoint idea  
is beautiful and does not obviously contradict current ideas  
on exocytic regulation. However, potential mechanisms for  
V0-mediated membrane fusion remain controversial (Saw et al., 
2011; Ernstrom et al., 2012). In yeast, V0 proteolipid expansion 
in the membrane has been proposed to play a direct role in lipid 
mixing during vacuole fusion based on a thorough genetic dis-
section of fusion and acidification functions of the V0 sector 
(Strasser et al., 2011). No such role has hitherto been shown for 
neurotransmitter release, which comprises numerous different 

How about the dependence of exocytosis on acidification? 
Poëa-Guyon et al. (2013) developed an assay based on granule 
exocytosis in neurosecretory PC12 cells. Compartmental proton 
gradients can be abolished by a variety of means, including 
pharmacological inhibition of the V-ATPase with bafilomycin 
or concanamycin. A more acute destruction of intracompart-
mental proton gradients can be achieved through addition of  
alkalizing ammonium chloride or the potassium ionophore 
nigericin, which exchanges intracompartmental protons with 
potassium ions. Interestingly, Poëa-Guyon et al. (2013) found 
that only the acute disruption of the intracompartmental proton 
gradients with ammonium chloride or nigericin leads to an 
impairment of secretion but not block of the V-ATPase. What 
happens to the V-ATPase and its acidification-independent func-
tion under these different conditions? The authors show that 
both ammonium chloride and nigericin not only abolish the 
proton gradient but also lead to increased association of the V0 
and V1 sectors (Fig. 1). This association is required to form a func-
tional pump. A straightforward explanation for this observation 
is that the cell attempts to activate the proton pump to reacidify 
vesicles that lost their proton gradient. In contrast, the pharma
cological block of the V-ATPase itself leads to increased free V0 
sectors, consistent with loss of proton pump function. In a key 
experiment, Poëa-Guyon et al. (2013) show that this pharmaco-
logical inhibition of the V-ATPase with bafilomycin can over-
ride the effects of ammonium chloride or nigericin and restore 
secretion. If the pharmacological block of the V-ATPase pre-
vents V0–V1 association, no functional pumps assemble even 
in the presence of ammonium chloride or nigericin. This result 

Figure 1.  V-ATPase V0–V1 association blocks 
secretion. (A) Poëa-Guyon et al. (2013) suggest 
that dissociation of V0 (red boxes) and V1 (green 
cylinders) sectors follows vesicle acidification 
(yellow) and frees the V0 sector for an acute, 
acidification-independent function in secretion. 
(B) V-ATPase–independent pharmacological 
disruption of vesicular acidification causes 
increased V0–V1 assembly of the functional 
proton pump, which in turn blocks secretion. 
(C) Pharmacological disruption of the V-ATPase 
disrupts both vesicle acidification and V0–V1 
assembly, thereby permitting V0-dependent se-
cretion. This mechanism can override disrup-
tion of acidification shown in B and restores 
secretion of nonacidified vesicles.
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forms of vesicle release that are differentially regulated. A bet-
ter genetic or pharmacological dissection is needed to reveal 
when, where, and how V0 meddles with membrane fusion.
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