

Course description

Course Title

Magnetic Resonance Spectroscopy

Espectroscopia de Ressonância Magnética

Type/Attendance Time	Credit points (ECTS)	Type of Examination
Lecture: 2 hours per week	5	Examination, Exercises
Tutorial: 2 hours per week		

Recommended Prerequisites

[Requirements necessary for entrance to be entered]

Content

1. Physical fundamentals of NMR spectroscopy

Magnetic moments in magnetic fields, quantization of nuclear and electron spin; Magnetization, longitudinal and transversal relaxation, motion of magnetic moments under the influence of static and rotating magnetic fields (Bloch equations); Fourier transformation of free induction decay, molecular exchange processes

2. One- and two-dimensional high resolution NMR spectroscopy

Phenomenological description of NMR spectra, chemical and magnetic equivalence; Spin systems of the first order and of higher orders, two-dimensional NMR experiments

3. Chemical Shift

Physical background, anisotropy of the chemical shift, determination of anisotropy by rotational diffusion and sample rotation around the magic angle

4. Dipolar Interaction

Physical background, energy-level diagram of two-spin systems with dipolar interactions. Influence of dipolar interactions on solid-state NMR spectra, influence of dipolar interactions on liquid-sate NMR spectra: Relaxation and the Nuclear Overhauser effect

5. Scalar Coupling

Physical background, structural dependence of scalar coupling, analysis of NMR spectra of higher order spin systems

6. Quadrupolar Interaction

Physical background, energy-level diagram of single-spin systems with quadrupolar interaction. Influence of quadrupolar interactions on solid-state NMR spectra, influence of quadrupolar interactions on liquid-state NMR spectra

7. Dynamic NMR spectroscopy

8. EPR Spectroscopy

Conteúdo

- 1. Fundamentos físicos de espectroscopia RMN
- 2. Espectroscopia RMN uni- e bidimensional de alta resolução
- 3. Deslocamento químico
- 4. Interação dipolar
- 5. Acoplamento escalar
- 6. Interação quadrupolar
- 7. Espectroscopia de RMN dinâmica
- 8. Espectroscopia de EPR