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Metadynamics is a computational method to explore the phase space of a molecular system. Gaussian
functions are added along relevant coordinates on the fly during a molecular-dynamics simulation
to force the system to escape from minima in the potential energy function. The dynamics in the
resulting trajectory are however unphysical and cannot be used directly to estimate dynamical prop-
erties of the system. Girsanov reweighting is a recent method used to construct the Markov State
Model (MSM) of a system subjected to an external perturbation. With the combination of these
two techniques—metadynamics/Girsanov-reweighting—the unphysical dynamics in a metadynam-
ics simulation can be reweighted to obtain the MSM of the unbiased system. We demonstrate the
method on a one-dimensional diffusion process, alanine dipeptide, and the hexapeptide Val-Gly-
Val-Ala-Pro-Gly (VGVAPG). The results are in excellent agreement with the MSMs obtained from
direct unbiased simulations of these systems. We also apply metadynamics/Girsanov-reweighting
to a β-hairpin peptide, whose dynamics is too slow to efficiently explore its phase space by direct
simulation. Published by AIP Publishing. https://doi.org/10.1063/1.5027728

I. INTRODUCTION

Molecular dynamics (MD) simulations yield a realization,
xt , of the conformational dynamics of a molecular system at
atomistic resolution, where x ∈ Γ is a point in the molecular
phase space Γ and t is the time. MD simulations are typically
used to estimated phase-space ensemble averages EΓ[a] of
observable functions a(x),

EΓ[a] =
∫
Γ

a(x)µΓ(x) dx, (1)

which can then be interpreted in terms of the underlying
phase-space probability density µΓ(x). Molecular systems are
characterized by a vast phase space and high barriers in the
potential energy function. Thus, the sampling of the phase-
space probability density converges slowly, which renders the
estimation of ensemble averages from direct unbiased simula-
tions computationally expensive or even prohibitive for many
systems.

A wide range of techniques have been developed to
enhance the sampling in MD simulations, such as replica
exchange MD,1 umbrella sampling,2 and metadynamics.3–6

These simulations yield unphysical trajectories. However, the
phase-space ensemble average of the unbiased molecular sys-
tem can nonetheless be estimated from these trajectories by
comparing the phase-space probability densities of the biased
and the unbiased system for each frame in the trajectory
(phase-space reweighting). The combination of enhanced sam-
pling and phase-space reweighting techniques has increased
the system sizes that can be investigated by MD simulations
enormously.

a)Electronic mail: luca.donati@fu-berlin.de
b)Electronic mail: bettina.keller@fu-berlin.de

It is important to note that the analysis of phase-space
ensemble averages only yields information on the relative
population of the various conformations of the molecular sys-
tem but not on the dynamics with which the system transi-
tions between these conformations. In fact, when estimating
phase-space ensemble averages from trajectory data, the time-
information is completely neglected. In principle, MD trajec-
tories contain the full information of the molecular dynamics.
Yet, extracting any interpretable dynamic properties from these
data is an intricate task.7–11 One property, which can read-
ily be estimated from MD trajectories, is the time-lagged
correlation function between two observable functions a(x)
and b(x),

cor(a, b; τ) =
∫
Γ

∫
Γ

a(x)µΓ(x)p(x, y; τ)b(y) dx dy, (2)

where p(x, y; τ) is the transition probability density, i.e.,
the probability to find the system at y after at time t + τ
given that it has been in x at time t. Markov state models
(MSMs)12–20 make use of cross-correlation functions to build
a transition probability matrix of the dynamics. From the dom-
inant eigenvectors and eigenvalues of the transition probability
matrix, one obtains a coarse-grained, and thus humanly under-
standable, representation of the complex and often multiscalar
molecular dynamics. MSMs have become an indispensable
tool for the elucidation of complex molecular dynamics and
have highlighted the importance of dynamic effects in under-
standing the function and macroscopic properties of molecular
systems.21–26

When constructing MSMs, one faces a similar sam-
pling problem as for the estimation of phase-space ensem-
ble averages. However until a few years ago, MSMs
could not be estimated from enhanced sampling simulations
because methods to reweight the transition probability density
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p(x, y; τ) from the biased dynamics to the unbiased dynam-
ics were lacking. Although protocols to optimally seed27 and
respawn28 simulations have been proposed, the limitation
to unbiased simulations made MSMs computationally very
expensive.

In recent years, several dynamic reweighting schemes32–36

have been published with which one can reweight a discrete
approximation of the transition probability density, namely,
P[xt+τ ∈ Bj |xt ∈ Bi], the conditional probability of finding the
system within state Bj at time t + τ, given that it has been in
state Bi at time t. Bi, Bj ⊂ Γ are discrete states in the phase space
of the system. These methods need to assume that the system
is in local equilibrium within state Bi before it transitions to
state Bj.

An alternative approach is the Girsanov reweighting
method for path ensemble averages,37–39 in which not the
transition probability P[xt+τ ∈ Bj |xt ∈ Bi] but the transition
probability density p(x, y; τ) is reweighted. One advantage of
this approach is that one does not need to assume local equilib-
rium or even the prior definition of a particular discretization
of the molecular phase space. Reweighting p(x, y; τ) becomes
possible by considering the ensemble of all possible paths ω
= {x0, x1, . . ., xn} of length τ which start in point x0 at time t
and end in point xn = y at time t + τ. Then, instead of reweight-
ing the transition probability as such, the probability density
with which each individual path occurs is reweighted from the
biased dynamics to the unbiased dynamics. Integrating over the
path ensemble with appropriately reweighted path probability
densities ultimately yields the transition probability density of
the unbiased system.

We have recently demonstrated the Girsanov reweighting
method for all-atom MD simulations and used it to reweight
MSMs from a reference potential energy function to a series
of perturbed potential energy functions.39 Since the transi-
tion probability density p(x, y; τ) is reweighted, the Girsanov
reweighting method can be applied to reweighted arbitrary
correlation functions [Eq. (2)] and to obtain the associated
dynamic properties, such as, for example, stopping times of
trajectories which reach a certain target set.40

In this contribution, we ask whether Girsanov reweight-
ing can be used to obtain unbiased MSMs from simulations
which are biased by a metadynamics potential. Metadynam-
ics3–6 is an enhanced sampling method, in which Gaussian
functions are deposited along collective variables such that
the system is driven out of the minima of the potential energy
function. When fully converged, the metadynamics potential
compensates the free energy surface in the space of the col-
lective variables. Thus, the bias is quite strong. On the other
hand, the variance of the Girsanov reweighting estimator sen-
sitively depends on the gradient of the bias. We choose a
heuristic approach and test whether a biasing strength which
yields an appreciable speed-up of the simulation is compati-
ble with the Girsanov reweighting method. First, we bench-
mark the biasing strength and the metadynamics/Girsanov-
reweighting method on a one-dimensional diffusion process.
Then, we demonstrate the method on two molecular systems
for which reference MSMs can be constructed by direct sim-
ulation (alanine dipeptide and a hexapeptide). Finally, we use
metadynamics/Girsanov-reweighting to obtain a MSM of a

β-hairpin peptide whose dynamics is too slow to obtain a MSM
by direct simulation.

II. THEORY
A. Molecular dynamics

Consider a molecular system governed by the Langevin
equation,

M
dv(t)

dt
= −∇Vt(r(t)) − γv(t) + ση(t),

v(t) =
dr(t)

dt
,

(3)

where M is the mass matrix, r(t) and v(t) ∈ R3N are the posi-
tion and the velocity vector. V t(r) is the potential energy func-
tion, which may be time-dependent. The interaction between
the molecular system and the solvent is modeled by the fric-
tion coefficient γ and an uncorrelated Gaussian white noise
η(t) ∈ R3N , which is scaled by the volatility σ according to
the Einstein relation σ =

√
2kBTγM where kB is the Boltz-

mann constant and T is the temperature of the system. The
state of the system at time t is represented by the vector x(t)
= {r(t), v(t)} ∈ Γ, where Γ = R6N denotes the phase space of
the system.

Numerical integration of Eq. (3) with a time step of ∆t
for n time steps yields a time-discretized trajectory ω = {x0,
x1, . . ., xn}. Note that the numerical integration requires a
sequence of normal random numbers for each dimension of
the position space η(i) = {η(i)

1 , . . . , η(i)
n }, with η(i)

k ∼ N(0, 1)
and i ∈ [1, 2, . . . ,R3N ].

B. Metadynamics

A recurrent problem in MD simulations is that one needs
to generate very long trajectories to exhaustively sample the
phase space Γ. Metadynamics3,4 is a technique used to accel-
erate the exploration of the phase-space along a few relevant
coordinates (also known as collective variables) along which
the slowest transitions in the system occur. We consider a set
of d collective variables s = s(r) = {s1(r), s2(r), . . ., sd(r)}.
During the build-up phase in metadynamics, a time-dependent
potential Vmeta(s, t) is added to a reference potential V0(r), and
Eq. (3) is integrated with

Vt(r) = V0(r) + Vmeta(s(r), t). (4)

Thus, this build-up phase corresponds to a simulation of
Langevin dynamics with a time-dependent potential energy
function. The biasing potential is constructed as a growing
sum of Gaussian functions on the collective variables si as

Vmeta(s, t) =
t′<t∑

t′=τG,2τG,...

W exp*
,
−

d∑
i

(si − si(r(t ′))2

2σ2
si

+
-
, (5)

where W is the height of the Gaussian, and σs is the variance
of the Gaussian function along the collective variable s. At reg-
ular intervals τG, the biasing potential is updated by adding a
Gaussian function of widthσs, which is centered at the current
position r(t ′), to the current potential. Note that the parameter
τG is not related to the Markov model lag-time τ. The effect is
that already visited positions are discouraged and the system
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is driven out of the minima of the original energy potential. In
the long time limit, the biasing potential converges to minus
the free energy F profile along the collective variable Vmeta(s,
t →∞) = −F(s) + C, where C is a constant.

Well-tempered metadynamics is a variant of metadynam-
ics, in which the height of each Gaussian function W in Eq. (5)
is scaled according to

W (t ′) = W0 exp

(
−

Vmeta(s, t ′)
∆T

)
, (6)

where W0 is the height of the Gaussian at Vmeta(s, t) = 0 and∆T
is a temperature-like parameter that controls the decay rate of
W. The higher the current metadynamics potential Vmeta(s, t) at
a position s, the smaller the height of the newly added Gaussian
functions. In the long time limit, the well-tempered metady-
namics potential [Eq. (5)] does not fully compensate the free
energy profile but converges to

Vmeta(s, t → ∞) = −
∆T

T + ∆T
F(s) + C, (7)

while the probability distribution on collective variables con-
verges to

π(s) ∝ exp

[
−β

(
T

T + ∆T
F(s)

)]
. (8)

Note that ∆T controls the extent to which Vmeta(s, t → ∞)
compensates the free-energy profile. For ∆T → +∞, W →W0

and the standard metadynamics is retained, while for ∆T → 0,
unbiased MD is recovered.

Various reweighting schemes41–44 have been developed
to estimate phase-space ensemble averages of the reference
potential V0 from the biased simulation. Note, however, that
typically the build-up phase of a metadynamics simulation, i.e.,
the part of the simulation in which the metadynamics potential
grows, is not analyzed due to the difficulties that arise in ana-
lyzing dynamics at time-dependent potential energy functions.
Instead, the converged metadynamics potential Vmeta(s(r))
is used to construct a time-independent potential energy
function

V (r) = V0(r) + Vmeta(s(r)). (9)

MD simulation at this potential is carried out and analyzed by
phase-space reweighting methods. We will call this latter type
of simulation metadynamics rerun.

C. Markov state models

Consider a dynamic process which is Markovian, ergodic,
and reversible, such as Eq. (3). The time-evolution of the asso-
ciated phase-space probability density pt(x) can be represented
by a propagator P(τ), a continuous operator that transports
the probability density forward in time: pt+τ(y) = P(τ)pt(x) =
∫Γ p(x, y; τ)pt(x) dx. This propagator can be approximated by
Markov state models (MSM).12–18,20

In MSMs, the phase space is discretized into g disjoint sets
(or microstates) B1, B2, . . ., Bg with ∪g

i=1Bi = Γ. Given a lag-
time τ, the probability of observing a transition from Bi to Bj,
P[xn ∈ Bj, x0 ∈ Bi], can be represented by a cross-correlation
function

Cij(τ) =
∫
Γ

∫
Γ

1Bi (x)µΓ(x)1Bj (y) p(x, y; τ) dy dx, (10)

where 1Bi is the indicator function of the ith set

1Bi (x) B



1 if x ∈ Bi

0 otherwise
, (11)

and µΓ(x) is the stationary probability density

µΓ(x) =
exp

[
−βH(x)

]
Z

, (12)

where β = 1
kBT ,H(x) = 1

2 v>Mv+V (r) is the classical Hamilto-
nian of the system, and Z = ∫Γ exp

[
−βH(x)

]
dx is the partition

function.
The conditional transition probability P[xn ∈ Bj |x0 ∈ Bi]

of observing the system in Bj at time t + τ, given that it has
been in Bi at time t, is

Tij(τ) =
Cij(τ)∑g

j=1 Cij(τ)
. (13)

For reversible processes, the resulting transition matrix
T(τ): T ij(τ) is a matrix representation (approximation) of
the propagator. Its dominant eigenvectors and eigenval-
ues contain information about the slow processes of the
system,12–18,20

T(τ)rk=λk(τ)rk ,
l>k T(τ)=λk(τ)l>k ,

(14)

where l>k denotes the transpose of vector lk . If the implied time
scales

tk(τ) = −
τ

ln(λk(τ))
= const. ∀ τ > 0 (15)

are independent of the lag time τ, the approximation is
considered to be valid. In practice, one aims at finding a
region of τ, for which the implied time scales are roughly
constant.15,18

D. Girsanov reweighting

Girsanov reweighting37 is a method to reweight a path
ensemble average EΩ[f ] which has been measured for dynam-
ics at potential V (r) to its corresponding value at V (r) + U(r),
without re-sampling the dynamics at V (r) + U(r). Because
Eq. (10) can be formulated in terms of a path ensemble aver-
age, Girsanov reweighting can be used to obtain the MSM for
dynamics at V (r) + U(r) by reweighting trajectories sampled at
V (r).38,39 We will explain the method using time-discretized
paths ω which are obtained by numerical integrating equa-
tion (3). For more details on path spaces and path probabil-
ities and the implications of using time-discrete rather than
time-continuous paths, see Ref. 39.

Let ω = {x0 = x, x1, . . ., xn} be a path of length τ = n ·∆t
which starts in a specific state x0 = x. The path space, i.e., the
set of all possible paths ω of length τ which start in x0 = x,
is Ωτ ,x. The path probability density, i.e., the probability of
observing a pathω ∈Ωτ ,x, is µΩ(ω) = µΩ(x1, x2, . . ., xn|x0 = x).
Let Sτ ,x ,m = {ω1, ω2, . . ., ωm} ⊂ Ωτ ,x be a sample of the path
space, which has been generated by integrating equation (3)
with V t(r) = V (r) and x0 = x. The probability density that
a particular path appears in the set is given by µΩ(ω). Let
furthermore f (ω) = f (x1, x2, . . ., xn) be a path observable, i.e.,
a function which assigns a real-valued number to each path
ω. The path ensemble average of f (ω) for dynamics at V (r) is
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obtained by a weighted integration over all paths, except for
the first state x0 = x,

EΩ[f | x0 = x] =
∫
Ωτ ,x

µΩ(ω) f (ω) dω

=

∫
Γ

∫
Γ

. . .

∫
Γ

µΩ(x1, x2, . . . , xn | x0 = x)

× f (x1, x2, . . . , xn) dx1, dx2, . . . , dxn

= lim
m→∞

1
m

∑
ωk ∈Sτ ,x,m

f (ωk). (16)

The last equality only holds if the sampling is ergodic. Dynam-
ics at an altered potential V (r) + U(r) generate a different
path probability density µ̃Ω(ω) and a different path ensem-
ble average ẼΩ[f |x0 = x]. However, if the path probability
ratio Mτ,x(ω) = µ̃Ω(ω)/µΩ(ω) is defined, ẼΩ[f |x0 = x]
can be estimated from the set of paths Sτ ,x ,m sampled
at V (r),

ẼΩ[f | x0 = x] =
∫
Ωτ ,x

µ̃Ω(ω) f (ω) dω

=

∫
Ωτ ,x

Mτ,x(ω) µΩ(ω) f (ω) dω

= lim
m→∞

1
m

∑
ωk ∈Sτ ,x,m

Mτ,x(ω)f (ωk). (17)

The Girsanov theorem specifies the conditions under which
Mτ ,x(ω) exists and asserts that

Mτ,x(ω) =
µ
Ω̃

(ω)

µΩ(ω)
= exp




3N∑
i=1



n∑
k=0

∇iU(rk)
σ

ηi
k

√
∆t

−
1
2

n∑
k=0

(
∇iU(rk)

σ

)2

∆t





, (18)

where ηi
k are the random numbers, along dimension i at time

step k, generated to integrate equation (3) with V (r), and
∇iU(rk) is the gradient of U(r) along dimension i measured
at the position rk .

E. Girsanov reweighting for MSMs

To use the Girsanov reweighting method on MSMs, the
cross-correlation function [Eq. (10)] has to be reformulated as
a path ensemble average. The transition probability p(x, y; τ)
in Eq. (10) is obtained from the path probability density µΩ(ω)
by integrating over all intermediate states between x0 = x and
xn = y,

p(x, y; τ) =
∫
Γ

∫
Γ

. . .

∫
Γ

µΩ(x1, x2, . . . , xn | x0 = x)

× dx1 dx2 . . . dxn−1. (19)

The indicator function of the final set Bj can be regarded as a
path observable f (ω) = f (xn) = 1Bj (xn) = 1Bj (y). Thus, the
integral over the final states y in Eq. (10) is formally a path
ensemble average,

∫
Γ

p(x, y; τ)1Bj (y) dy

=

∫
Γ

[∫
Γ

∫
Γ

. . .

∫
Γ

µΩ(x1, x2, . . . , xn | x0 = x)

× dx1 dx2 . . . dxn−1

]
1Bj (xn) dxn, (20)

= EΩ[1Bj |x0 = x]. (21)

The integral over the initial states in Eq. (10) is then formally
a phase-space ensemble average [Eq. (1)] of an observable
function a(x) = 1Bi (x)EΩ[1Bj | x0 = x],

Cij(τ) =
∫
Γ

µΓ(x) 1Bi (x)
∫
Ωτ ,x

µΩ(ω)1Bj (xn) dω dx

= EΓ[1Bi (x)EΩ[1Bj | x0 = x]]. (22)

The correlation function is thus a nested combination of
a path ensemble average and a phase-space ensemble average.
To obtain the correlation function C̃ij(τ) at V (r) + U(r), one
needs to reweight the path ensemble average EΩ[1Bj |x0 = x]
using Eqs. (17) and (18)and the phase-space ensemble average
according to

ẼΓ[a] =
∫
Γ

µ̃Γ(x) a(x) dx =
∫
Γ

g(x)µΓ(x) a(x) dx, (23)

where

g(x) =
µ̃Γ(x)
µΓ(x)

=
Z

Z̃
exp(−βU(r)). (24)

The function g(x) is the probability ratio of the two phase-
space probability densities: µΓ(x) associated with V (r) and
µ̃Γ(x) associated with V (r) + U(r). Thus,

C̃ij(τ) =
∫
Γ

µ̃Γ(x) 1Bi (x)
∫
Ωτ ,x

µ̃Ω(ω)1Bj (xn) dω dx

=

∫
Γ

g(x)µΓ(x) 1Bi (x)
∫
Ωτ ,x

Mτ,x(ω)µΩ(ω)1Bj (xn) dω dx.

(25)

In praxis, Cij(τ) is estimated from a set of m paths of
length τ, Sτ ,m = {ν1, ν2. . ., νm}, sampled at V (r) with initial
states distributed according to Eq. (12) as

Cij(τ) = lim
m→∞

1
m

m∑
k=1

1Bi ([x0]k) · 1Bj ([xn]k), (26)

where [xi]k denotes the ith time step of the kth path. C̃ij(τ)
can be estimated from the same set of paths by reweighting
Eq. (26) analogously to Eq. (25),

C̃ij(τ) = lim
m→∞

1
m

∑
νk ∈Sτ ,m

g([x0]k)1Bi ([x0]k) ·Mx,τ(νk)1Bj ([xn]k).

(27)

Finally, the transition probability between set Bi and set Bj for
the perturbed dynamics is obtained as

T̃ij(τ) =
C̃ij(τ)∑
j C̃ij(τ)

. (28)

The functions g(x) and Mτ ,x(ω) are two Radon-Nikodym
derivatives.37 In particular, g(x) represents a change of mea-
sure on the phase-space, while Mτ ,x(ω) represents a change
of measure on the path-space.
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F. Metadynamics/Girsanov reweighting

The metadynamics/Girsanov-reweighting method con-
sists of running metadynamics simulations and constructing
MSMs of the unbiased system by reweighting to the molecular
reference potential energy function V0(r). In rerun metady-
namics, the paths Sτ ,m = {ν1, ν2, . . ., νm} are sampled at the
time-independent potential given by Eq. (9). One would like
to reweight the resulting paths to the dynamics at V (r) + U(r)
= V0(r). Thus, the perturbation which enters Eq. (18) is

U(r) = V0(r) − V (r) = −Vmeta(r). (29)

A different application of the Girsanov reweighting to
metadynamics simulations exploits the fact that the Girsanov
theorem can also be used to reweight path ensembles gener-
ated by time-dependent potential energy functions. Thus, it
can be used to reweight the build-up phase of the metadynam-
ics potential. The perturbation which enters Eq. (18) is then
time-dependent and is given as

U(r, t) = V0(r) − V (r, t) = −Vmeta(r, t). (30)

Additionally, the phase-space probability ratio [Eq. (24)]
becomes time-dependent,

g(x, t) =
µ̃Γ(x)
µΓ(x, t)

=
Z

Z̃
exp(βVmeta(r, t)). (31)

III. METHODS
A. One-dimensional system

We consider a one-dimensional diffusion process xt which
is governed by the stochastic differential equation,

dxt = −∇V (xt) + σdBt , (32)

where Bt denotes a standard Brownian motion, σ = 1.5 is
the volatility, and V (x) is a one-dimensional potential energy
surface given by the function

V (x) = 4

(
x3 −

3
2

x

)2

− x3 + x. (33)

This function describes a one-dimensional triple-well poten-
tial. Equation (32) has been numerically integrated using the
Euler-Maruyama scheme

xn+1 = xn − ∇xV (xn)∆t + ση
√
∆t, (34)

where ∆t = 0.001 is the integration time step, η are indepen-
dent and identically distributed random variables drawn from
a standard Gaussian distribution, and n is the index of the time
step.

Direct simulations. We have first produced trajectories of
4e4, 4e5, 4e6, and 4e7 time steps. For each trajectory, we built
an MSM with enforced detailed balance, extracted the domi-
nant eigenvalues and eigenvectors, and estimated the implied
time scales [Eq. (15)] in the range of [10 : 500] time steps.
The MSMs were built by discretizing the interval x = −2 :
2 in 100 bins. The reference MSM is constructed on the tra-
jectory of 4e7 time steps with a lag-time of 50 time steps. To
obtain estimates of the uncertainties in the implied time scales,
we repeated each numerical experiment, i.e., simulation and
MSM construction, 50 times. Thus, for each of the considered
simulation lengths (4e4, 4e5, 4e6, and 4e7), we have 50 trajec-
tories and the associated MSMs. The implied time scales in the
column “Direct simulation” Table I are given as the average
for each sample of 50 MSMs, and the uncertainties are given
as the standard deviation.

Metadynamics build-up. The metadynamics potential
Vmeta(s(r)) [Eq. (5)] was generated with parameters W = 0.02,
σs = 0.2, and τG = 2000, where s(r) = x. Because Vmeta(s(r)) is
a sum over Gaussians, the gradient calculation becomes com-
putationally demanding as the number of terms in the sum
grows. To overcome this problem and keep the efficiency of
the simulation constant, we stored the bias at each update, on
a grid of 1000 bins between x = −2.0 and x = 2.0. We ter-
minated the build-up after 4e4 time steps (Vmeta4e4(x)), 4e5
time steps (Vmeta4e5(x)), 4e6 time steps (Vmeta4e6(x)), and 4e7
time steps (Vmeta4e7(x)) to obtain four different metadynam-
ics potentials for the metadynamics rerun experiments. We
reweighted the trajectory from each of the build-up phases
using Eqs. (30) and (31)and obtained an MSM of the unbiased
potential [Eq. (33)]. The MSMs were constructed analogously
to the MSMs of the direct simulation. As before, we repeated

TABLE I. Implied time scales associated with the second and third MSM eigenvector of the one-dimensional
diffusion process. The numbers show the average and standard deviation of a sample of 50 numerical experiments
(simulation and reweighted MSM).

Simulation Rerun Rerun Rerun Rerun

Time steps Direct simulation Vmeta4e4 Vmeta4e5 Vmeta4e6 Vmeta4e7 Build-up

4e4 1.5e3 ± 316 1.5e3 ± 415 1.61e3 ± 433 1.49e3 ± 309 1.74e3 ± 530 1.53e03 ± 142
345 ± 60 344 ± 60 353 ± 59 346 ± 50 391 ± 174 350 ± 48

4e5 1.53e3 ± 118 1.53e3 ± 107 1.49e3 ± 81 1.51e3 ± 86 1.57e3 ± 581 1.53e3 ± 76
357 ± 18 357 ± 17 355 ± 15 357 ± 17 381 ± 146 358 ± 16

4e6 1.52e3 ± 32 1.52e3 ± 34 1.52e3 ± 32 1.52e3 ± 21 1.5e3 ± 82 1.52e3 ± 26
357 ± 6 357 ± 5 357 ± 4 357 ± 4 347 ± 66 358 ± 5

4e7 1.53e3 ± 11 . . . . . . . . . . . . . . .

358 ± 2 . . . . . . . . . . . . . . .
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each numerical experiment, i.e., metadynamics build-up sim-
ulation and Girsanov-reweighted MSM, 50 times to obtain
averages and standard deviations of the implied time scales
(column “Build-up” in Table I).

Metadynamics rerun. We sampled the four meta-
dynamics potentials (Vmeta4e4(x), Vmeta4e5(x), Vmeta4e6(x),
Vmeta4e7(x)) by conducting simulations of 4e4, 4e5, 4e6, and
4e7 time steps for each potential. We reweighted each trajec-
tory using Eq. (29) and obtained an MSM of the unbiased
potential [Eq. (33)]. The MSMs were constructed analogously
to the MSMs of the direct simulation. In total, this yielded 16
different numerical experiments (metadynamics rerun simula-
tion and Girsanov-reweighted MSM). As before, we repeated
each numerical experiment 50 times to obtain averages and
standard deviations of the implied time scales (column Vmeta4e4

to Vmeta4e7 in Table I).
To numerically integrate Eq. (32) and to build the MSM,

we have written our own software in C++.

B. MD simulations

We performed MD simulations of acetyl-alanine-
methylamide (Ac-A-NHMe, alanine dipeptide), VGVAPG
hexapeptide, and a β-hairpin structure, in implicit water. All
simulations were carried out with the OpenMM 7.01 simula-
tion package45 in an NVT ensemble at 300 K. Each system
was simulated with the force field AMBER ff-14sb46 and the
GBSA model47 for implicit solvent simulation. A Langevin
thermostat has been applied to control the temperature and
a Langevin leapfrog integrator48 has been used to integrate
Eq. (3) with a time step of 2 fs. Interactions beyond 1 nm are
truncated. Metadynamics has been implemented through the
plugin Plumed2.6

Girsanov reweighting has been efficiently implemented
in OpenMM. We have estimated on the fly the terms of the
stochastic and the Riemann integral that appear in Eq. (18),
writing out the terms

I(a) =
3N∑
i=1

a ·nstxout−1∑
k=(a−1)·nstxout

∇iU(rk)
σ

ηi
k

√
∆t (35)

and

R(a) = −
3N∑
i=1

1
2

a ·nstxout−1∑
k=(a−1)·nstxout

(
∇iU(rk)

σ

)2

∆t (36)

at the same frequency nstxout of the positions. After the sim-
ulation, we have reconstructed the complete probability ratio
as

Mτ,x(ω) = exp



A∑
a=1

I(a) + R(a)



, (37)

where A ∈ N such that τ = n∆t = A · nstxout ·∆t. To
overcome numerical instabilities caused by Eq. (18), we
have used the high precision arithmetic libraries The GNU
Multiple Precision Arithmetric Library (GMPLib),49 The
GNU MPFR Library,50 and Eigen.51

1. Alanine dipeptide

For alanine dipeptide, we ran a reference simulation of
length 1 µs and we saved the positions every nstxout = 100

time steps, corresponding to 0.2 ps. The selected collective
variables were the backbone torsion angles φ and ψ.

To test the rerun method, we have performed a well-
tempered metadynamics with the parameters W = 1.2 kJ/mol,
σφ = σψ = 0.35 rad, and τG = 0.2 ps and bias factor
λ = T+∆T

∆T = 6.0 of 155 ps. The Gaussian functions were
stored on a squared grid with boundaries −π and π and a grid
spacing of 0.1 for both the torsion angles. We ran simula-
tions of length 20 ns, biased by the metadynamics potential
scaled by a factor 0.1, and build an MSM enforcing detailed
balance, by discretizing both torsion angles in 36 bins, result-
ing in 36 × 36 = 1296 microstates. The lag-time used for
the graphs of the eigenvectors was 100 ps, while the lag-
time range for the graphs of the implied time scales was
[0: 250] ps. This computational experiment was repeated 20
times to estimate the statistical uncertainty in the implied time
scales.

To test the reweighting during the build-up phase, we
applied a well-tempered metadynamics with the parameters
W = 0.0005 kJ/mol, σφ = σψ = 0.5 rad, and τG = 0.2 ps and
bias factor λ = 6.0. The simulation length was 500 000 time
steps corresponding to 100 ns. The MSM was built by dis-
cretizing both torsion angles in 36 bins, resulting in 36 × 36 =
1296 microstates and enforcing detailed balance. The lag-time
used for the graphs of the eigenvectors was 100 ps, while the
lag-time range for the graphs of the implied time scales was
[0: 250] ps.

2. Hexapeptide Val-Gly-Val-Ala-Pro-Gly

The hexapeptide was obtained by cutting off the residues
from 170 to 177 from the crystal structure of the Ca6 site
mutant of Pro-SA-subtilisin52 (PDB ID: 3VHQ). We have per-
formed 20 unbiased replica simulations of length 500 ns to
build a reference MSM.

The biased collective variable was the end-to-end distance
of the peptide, i.e., the distance between the amine nitrogen of
residue 1 and the carbonyl carbon of residue 6.

To test the rerun method, we have performed a meta-
dynamics simulation of 2 ns, with the parameters W = 0.1
kJ/mol, σ = 0.02 nm, and τG = 0.2 ps to build the bias.
Afterward, we have created two sets of simulations biased
by the metadynamics potential scaled by a factor 0.1. The first
dataset was of ten simulations of length 40 ns and was used
to build a single MSM. The second dataset was of ten sim-
ulations of length 100 ns and was used to build ten different
MSMs.

To test the reweighting during the build-up phase, we
applied a well-tempered metadynamics with the parame-
ters W = 0.0005 kJ/mol, σ = 0.02 nm, and τG = 0.2
ps and bias factor λ = 6.0. The simulation length was
100 ns.

In both the cases, the bias was stored on a one-dimensional
grid between 0.2 nm and 2.2 nm, with a grid-spacing of
0.03 nm.

The MSM have been built, enforcing detailed balance, by
discretizing the collective variable in 50 microstates. The lag-
time used for the graphs of the eigenvectors was 200 ps, while
the lag-time range for the graphs of the implied time scales
was [0: 600] ps.
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3. β-hairpin peptide

The β-hairpin structure has been extracted from the
immunoglobulin binding domain of streptococcal protein G53

(PDB ID: 1GB1). We have performed 48 simulations of length
350 ns (total simulation time of 16.8 µs).

Metadynamics has been realized by biasing the three
hydrogen-bonds, named r1, r2, and r3, connecting, respec-
tively, the residues 2-15, 4-13, and 6-11. The parameters used
to build the Gaussian functions are W = 0.15 kJ/mol, σ = 0.1
nm, and τG = 1 ps and bias factor λ = 6.0. The simulation
length was 50 ns.

The bias has been stored on a one-dimensional grid
between 0.0 nm and 5.2 nm, with a grid-spacing of
0.03 nm. Afterward, we ran 35 parallel simulations of length
40 ns, biased by the metadynamics potential, scaled by a
factor 0.1.

In the β-hairpin peptide, we did not use the metadynam-
ics collective variables to construct the Markov state model
but instead used the time-structure based Independent Com-
ponent Analysis (tICA) method to estimate a two-dimensional
subspace from the metadynamics rerun simulations. The input
coordinates of for tICA were the time series of the minimal
atom root-mean-square distances (minRMSD) to a reference
structure, i.e., |xi(t) − xi ,ref|, where i = 1, . . ., N is the atom
index and xi(t) are the Cartesian coordinates of atom i at time

t. As a reference structure, we chose the first frame of the tra-
jectory, i.e., xi ,ref = xi(0). The prefix “min” indicates that the
atom root-mean-square distances have been measured after a
rotational and translational fit has been applied to the struc-
ture at time t such that the overall RMSD between the two

structures (RMSDtot =
1
N

√∑N
i=1(xi(t) − xi,ref )2) is minimized.

Then, we used the k-means algorithm on the two time-
independent coordinates with the largest eigenvalues of the
tICA matrix and clustered the data in 50 states. The MSM
has been stated on a Voronoi discretization which is generated
by the 50 cluster centers, enforcing detailed balance. MSM
tICA analysis54,55 has been implement through the package
PyEMMA.56

IV. RESULTS
A. One-dimensional system

We illustrate the metadynamics/Girsanov-reweighting
method on a one-dimensional diffusion process and test how
the strength of the bias influences the uncertainty in the
reweighted implied time scales. The potential energy function
[Eq. (33) and Fig. 1(a)] has three minima at x =−1.12, x = 0.05,
and x = 1.29, separated by two barriers located at x =−0.83 and
x = 0.61. The first left MSM eigenvector [Fig. 1(b)] is equal to
the Boltzmann distribution. The second eigenvector represents

FIG. 1. One-dimensional diffusion process. (a) Potential energy function. (b) First three left MSM eigenvectors. (c) Implied time scales associated with the
second and third eigenvector. (d) Free energy profile associated with the metadynamics potential. (e) First three left MSM eigenvectors—rerun. (f) Associated
implied time scales—rerun. (g) First three left MSM eigenvectors—build-up. (h) Associated implied time scales—build-up.
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the transition across the largest barrier at x = 0.61 with an asso-
ciated implied time scale of 1530 time steps [Figs. 1(b) and
1(c)]. The third eigenvector represents the dynamic exchange
between the middle well and the two wells on the sides with
an associated implied time scale of 358 time steps [Figs. 1(b)
and 1(c)].

The implied-time scale test in Fig. 1(c) shows that the
two largest implied time scales of the system are constant,
already at very small lag times. This indicates that for the
chosen discretization, the discretization error is negligible and
the MSM is an excellent approximation of the underlying
diffusion process. Thus, any deviation from this reference solu-
tion in the metadynamics/Girsanov-reweighting results can be
attributed to either statistical uncertainties or to errors due to
the reweighting procedure.

Column “Direct simulation” in Table I gives an overview
of the statistical uncertainties in the implied time scales for
the direct simulation of the process with different simula-
tion lengths: 4e4, 4e5, 4e6, and 4e7 time steps. As expected,
increasing the length of the simulation reduces the statistical
uncertainties. Note however that the shortest simulation with
4e4 time steps is more than an order of magnitude longer than
the slowest implied time scale, yet the statistical uncertainty
is still 20%. To decrease the uncertainty to less than 10%, a
direct simulation of 4e5 time steps is needed. Due to this slow
decrease of the statistical uncertainty with simulation length,
statistical uncertainties of 20% and more are quite common in
MSMs of molecular systems.57

1. Metadynamics/Girsanov reweighting
on rerun simulations

We produced four metadynamics potentials Vmeta4e4,
Vmeta4e5, Vmeta4e6, and Vmeta4e7 by writing out Vmeta(s,t)
[Eq. (5)] at t = 4e4, 4e5, 4e6, and 4e7 time steps. We chose
a protocol in which the metadynamics potential is build up
slowly such that the bias is distributed evenly across the
x-axis. Figure 1(d) shows the inverted metadynamics poten-
tials shifted by a constant such that all potentials coincide in
the right-hand minimum of the potential energy surface, i.e.,
−Vmeta4e4 + Cmeta4e4, −Vmeta4e5 + Cmeta4e5, etc. In the limit of
an infinitely long build-up phase, the sum of the metadynam-
ics potential and reference potential should yield a constant
potential, i.e., V (x) + Vmeta(x) = Cmeta. Then, up to a constant,
the inverted metadynamics potential is equal to the reference
potential, i.e., −Vmeta(x) + Cmeta = V (x). Indeed, the inverted
metadynamics potential for a build-up phase of t = 4e7 time
steps is almost equal to the reference potential [magenta line
in Fig. 1(d)]. The build-up phase of t = 4e4 time steps yields a
very weak metadynamics potential, whereas build-up phases
of t = 4e5 and t = 4e6 time steps yield metadynamics potentials
of intermediate strength.

Each of the four metadynamics potentials was used as a
constant bias for a new set of simulations. From these biased
simulations, we obtained MSMs of the reference system using
the Girsanov-reweighting method. For Vmeta4e4, Vmeta4e5, and
Vmeta4e6, the slowest MSM eigenfunctions are in excellent
agreement with the reference solution [Fig. 1(e)]. For Vmeta4e7,
the eigenvectors deviate in the region of the first minimum in
the potential energy surface from the reference solution. The

implied time scale test [Fig. 1(f)] shows that for the reweighted
MSMs (as for the reference MSM) the discretization error is
negligible for a wide range of lag times. To investigate the
statistical uncertainty of the implied time scales, we varied the
simulation length of each of the biased simulations between
4e4 and 4e6 time steps (columns “Vmeta4e4” to “Vmeta4e7”
in Table I). All of the estimates agree within the statistical
uncertainty with the corresponding reference values. For each
metadynamics potential, increasing the simulation length of
the biased simulation decreases the statistical uncertainty, as
would be expected.

However, increasing the bias does not necessarily
decrease the statistical uncertainty. For a given simulation
length, the biases Vmeta4e4 to Vmeta4e6 yield similar statisti-
cal uncertainties. By contrast, the largest bias Vmeta4e7 yields
much higher statistical uncertainties. The reason for this is that
the overall statistical uncertainty is a combination of the num-
ber of observed transitions and the variance of the estimator
for the path probability ratio Mτ ,x(ω) [Eq. (18)]. This variance
increases with the gradient of the bias ∇iU(r). Thus, a larger
bias increases the number of observed transitions across the
largest barrier in the reference system, which reduces the over-
all statistical uncertainty. But it also generates a larger gradient,
which yields a larger variance in the estimator of Mτ ,x(ω). In
metadynamics/Girsanov-reweighting, these two effects need
to be balanced when choosing the optimal bias. We suggest
to use a metadynamics potential which partially compensates
the free-energy profile along the collective variables. This can,
for example, be achieved by rescaling a metadynamics poten-
tial. If the metadynamics potential is fully converged, this is
equivalent to using a well-tempered metadynamics potential
as a bias [Eq. (7)].

Table I seems to indicate that for a given simulation
length, metadynamics/Girsanov-reweighting only marginally
improves on the statistical uncertainties compared to the
direct simulation. This seems to be an artifact of the one-
dimensional system. For higher-dimensional systems, bias-
ing a low-dimensional subspace considerably improved the
accuracy of the results compared to the direct simulation.

2. Metadynamics/Girsanov reweighting
during the build-up phase

Girsanov reweighting can also be applied to time-
dependent biasing potentials. Thus, it can be applied directly
to the build-up phase of the metadynamics potential. With
this strategy, one can omit the subsequent rerun simulation.
We reweighted build-up phases of t = 4e4, 4e5, and 4e6
time steps to obtain MSMs of the reference system. Both,
the reweighted eigenvectors and implied time scales are in
excellent agreement with the eigenvectors of the reference sys-
tem [Fig. 1(g) and Table I]. The uncertainty of the implied
time scales is reduced with respect to the direct simulations
(Table I).

B. Free energy profile from the reweighted MSM

For a sufficiently long build-up phase, the metadynam-
ics potential converges to minus the free energy F profile
along the collective variable Vmeta(s, t → ∞) = −F(s) + C.
In praxis, converging this estimate of the free energy profile
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often requires very long build-up simulations. With metady-
namics/Girsanov reweighting, the free energy profile can be
obtained from an unconverged metadynamics potential. From
a simulation with a constant, but not a fully converged meta-
dynamics biasing potential or from the build-up phase of the
metadynamics potential, an MSM of the reference system
is constructed in the space of the collective variables using
Girsanov reweighting. The first left eigenvector l0(s) of this
MSM represents the Boltzmann distribution of the reference
system,

l0(s) = π(s) =
1
Z

exp(−β F(s)). (38)

Thus, the free energy profile can be obtained from

F(s) = −
1
β

log(π(s)) + C = −
1
β

log(l0(s)) + C, (39)

where C is an arbitrary constant. We tested this approach
on the one-dimensional system with constant bias Vmeta4e6.
Because the position space of the system and the space of
the collective variables are identical in this case, F(s) = V (x).
In Fig. 2, the red points represent the free energy profile
obtained from the first eigenvector of the reweighted MSM,
built on the metadynamics trajectory of length 4e6 time steps.
The free energy profile obtained in this way fully matches
with the expected potential energy function, and it consider-
ably improved the free energy profile obtained by converting
the corresponding metadynamics potential Vmeta4e6 (Fig. 2,
green line).

C. Alanine dipeptide

As a first molecular test system for the metadynamics/
Girsanov-reweighting method, we used alanine dipeptide (Ac-
Ala-NHMe). We built an MSM of alanine dipeptide on the
space of the backbone torsion angles φ and ψ from 1 µs direc-
tion simulation of alanine dipeptide in implicit water as a ref-
erence. Figure 4(a) (first row) shows the well-known dominant
left MSM eigenvectors:57 the first eigenvector is the stationary
distribution with the typical conformational states (β region,
Lα region, and Rα region); the second eigenvector represents
the transition around the φ torsion angle corresponding to a
kinetic exchange between the Lα-minimum and the α-helix
and β-sheet minima; the third eigenvector represents the tor-
sion around ψ corresponding to a kinetic exchange between
the β region and the Rα-helical conformation. The associated
time scales of the two transitions are t1 = 2.8 ns and t2 = 27 ps.
The implied time scales are approximately constant, indicat-
ing that the MSM is a good approximation of the dynamics

FIG. 2. One-dimensional diffusion process. (Black) Potential energy func-
tion; (green) free energy profile associated with Vmeta4e6; (red dots) free energy
profile obtained from the first eigenvector of a reweighted MSM built from a
metadynamics simulation of 4e6 time steps.

and that the discretization error is small [Fig. 4(b), green
lines].

1. Metadynamics/Girsanov reweighting
on rerun simulations

Next, we performed a well-tempered metadynamics sim-
ulation of 155 ps, where we chose the φ and ψ backbone
torsion angles as collective variables. Figure 3(a) shows the
build-up of the metadynamics potential for 0 ≤ t ≤ 150 ps.
After 150 ps, the metadynamics potential is almost fully con-
verged in the φ-torsion angle and reasonably well-converged
in the ψ-torsion angle. Note that we use the metadynamics
bias to speed up the sampling in the collective variables and
not to measure the free-energy profile of the system. Thus,
full convergence is not required. On the contrary, our experi-
ments with the one-dimensional diffusion process had shown
that a fully converged metadynamics potential causes a large
variance in the estimator for path probability ratio Mτ ,x(ω).
We therefore rescaled the final metadynamics potential by a

FIG. 3. Time evolution of the metadynamics potentials on the relevant coordi-
nates. (a) Alanine dipeptide, potential every 15 ps, from 0 ps (green) to 150 ps
(black). (b) VGVAPG hexapeptide, potential every 200 ps, from 0 ps (green)
to 2000 ps (black). (c) β-hairpin, potential every 5 ns, from 0 ns (green) to
50 ns (black).
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FIG. 4. Alanine dipeptide. (a) First three left MSM eigenvectors. 1st row: reference; 2nd and 3rd rows: reweighting after two independent rerun simulations;
4th row: reweighting during the build-up phase. (b) Implied time scales associated with the second and third eigenvector, rerun method. Green: reference, blue:
average and standard deviation over twenty reweighted trajectories red: reweighting of a single trajectory. (c) Implied time scales associated with the second and
third eigenvector, build-up method. Green: reference, red: reweighting.

factor 0.1 and produced rerun simulations of 20 ns each at this
rescaled potential. This computer experiment was repeated
twenty times to account for the statistical uncertainty in the
reweighted MSMs. The Boltzmann distribution obtained from
the biased simulations is shown in Fig. 4(a) for two differ-
ent rerun simulations (second and third row, first column).
The sampling of the φ − ψ space is increased [compared to
Fig. 4(a), first row, second column], but the overall structure
of the underlying reference potential is still clearly visible.
To get an estimate of the speed-up of the rerun metadynamics
simulation compared to the unbiased simulation, we estimated
an MSM from the rerun trajectory without applying Girsanov
reweighting. The slowest process is still the torsion around φ,
but the associated time scale is now 780 ps (data not shown)
compared to 2.8 ns in the unbiased simulation. Thus, although
we used a moderate bias, we still gain a speed-up by roughly a
factor of 4.

Reweighting the rerun metadynamics simulations yielded
the dominant left eigenvectors shown in Fig. 4(a) (second and
third rows) that are in excellent agreement with the eigenvec-
tors of the reference system. However, the associated implied
time scales from single trajectories or aggregated trajecto-
ries are lower and less smooth then the implied time scale
plot of the direct simulation [Fig. 4(b), red dashed line]. The
blue line in Fig. 4(b) shows the average and standard devia-
tion over a set of twenty reweighted MSMs, which is in good
agreement with the reference model. Thus, the metadynamics/

Girsanov-reweighting yields the correct expected values and
the non-smoothness of the implied time scale plots is due to
statistical uncertainty, i.e., the variance of the estimator.

2. Metadynamics/Girsanov reweighting
during the build-up phase

We also constructed reweighted MSMs from the build-up
phase of the metadynamics potential. However, we chose a
much smaller height W for the Gaussians [Eq. (5)] such that
the growth of the metadynamics potential was slower than
the slowest time scale of the unbiased system. The build-
up simulation for the metadynamics potential was run for
100 ns. The corresponding sampling of the φ − ψ space is
shown in Fig. 4(a) (third row, first column). Reweighting the
build-up metadynamics simulations yielded the dominant left
MSM eigenvectors shown in Fig. 4(a) (third row). They are in
good agreement with the dominant MSM eigenvectors of the
unbiased system; in particular, they correspond to the same
conformational transitions. The population of the Lα-region is
overestimated, and overall the eigenvectors are “noisier” than
those estimated from the metadynamics rerun simulation. The
estimated slowest implied time scale is 3.8 ns.

D. Hexapeptide Val-Gly-Val-Ala-Pro-Gly

As non-trivial molecular system for which we can still
can generate a reference solution, we chose the hexapeptide
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Val-Gly-Val-Ala-Pro-Gly (VGVAPG). The peptide has
charged termini and its slowest process is the opening and
closing of the salt-bridge between the positively charged N-
terminus and the negatively charged C-terminus [Fig. 5(b)].
Correspondingly, we chose the distance between the nitro-
gen atom of the N-terminus and the carboxyl-carbon of the
C-terminus as a collective variable for the metadynamics
potential as well as for the MSM.

We performed 10 µs of direct simulations of VGVAPG
and constructed a reference MSM. The dominant left MSM
eigenvectors are shown as green lines in Figs. 5(c) and 5(e).
The first eigenvector represents the Boltzmann distribution
along the reaction coordinates, which has two maxima. When
the hexapeptide is in the closed conformation, the distance
between the nitrogen atom and the carbon atom is around
0.25 nm. When the hexapeptide is in the open conformation,
the distance between the backbone termini varies between 0.6
and 1.8 nm. The slowest process is the exchange between
these two conformations and is associated with an implied time
scale of about 5 ns [Fig. 5(d), green line]. The second slowest
process is the exchange between open but relatively compact
conformations and conformations at the ends of the distance
distribution, i.e., very extended conformations or closed con-
formations. It is associated with an implied time scale of
about 1 ns.

1. Metadynamics/Girsanov reweighting
on rerun simulations

We obtained an almost fully converged metadynamics
potential after 2 ns of metadynamics build-up simulation
[Fig. 3(b)]. As for the one-dimensional case and the alanine-
dipeptide, a fully converged metadynamics potential is not
the optimal bias for our purpose; thus, we rescaled the bias
by a factor 0.1 [blue and green lines in Fig. 5(a)] and then
we ran twenty biased simulations of 40 ns to 100 ns. The
left eigenvectors of the reweighted MSMs built from single
trajectories are in excellent agreement with the eigenvectors
of the reference system [Fig. 5(c), respectively, black and
green lines]. Also, the reweighted implied time scales, from
a MSM built on an aggregated trajectory (400 ns in total),
match those of the reference system for lag times of τ ≤ 300
ps [Fig. 5(d), red dashed line]. For larger lag times, they drift
to large values. The likely reason for this behavior is that the
variance of the estimator of Mτ ,x(ω) increases with the length
of τ, i.e., with the number of terms in the sum

∑n
k=0 . . . in

Eq. (18). The blue line shows the average and standard devi-
ation of a set of ten reweighted MSMs each estimated from
a trajectory of 100 ns. As for alanine dipeptide, also here
the expected value is in good agreement with the reference
model.

FIG. 5. Hexapeptide VGVAPG. (a) Free energy profiles. (b) Open and closed conformations of VGVAPG. (c) First three left MSM eigenvectors, rerun method.
Green: reference, Black: reweighting of ten trajectories. (d) First two implied time scales, rerun method. Green: reference, blue: average over ten reweighted
trajectories, red: reweighting of a single trajectory. (e) and (f) First three left MSM eigenvectors and associated implied time scales, build-up method. Green:
reference, red: reweighting.
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2. Metadynamics/Girsanov reweighting
during the build-up phase

To reweight the build-up phase of the metadynamics
potential, we chose a slow build-up mode: 100 ns of well-
tempered metadynamics simulation. The free-energy profile
associated with the final metadynamics potential is shown
in red in Fig. 5(a). Girsanov reweighting of this simulation
yields eigenvectors which are in very good agreement with
the reference MSM [Fig. 5(e)]. Only the population of the
closed conformation is slightly under-estimated. The asso-
ciated implied time scales are in reasonable agreement with
the reference solution. Interestingly, the implied time scale
plots do not diverge for large lagtimes, as it was the case in
the metadynamics/Girsanov-reweighting models of the rerun
simulation.

E. β-hairpin peptide

As a last example, we chose the β-hairpin from the
immunoglobulin binding domain of streptococcal protein G.53

The rearrangement of the hydrogen-bond pattern in the β-
hairpin is a very slow process. In 16.8 µs of direct simu-
lation of the β-hairpin peptide, we did not observe a sin-
gle opening event. We nonetheless analyzed the dynamics
of this simulation by constructing a MSM in the tICA54,55

space of the closed peptide (Fig. 6). The most frequent struc-
tures are a hairpin laying on a plane and a twisted hairpin
along the axis of the H-bonds [Fig. 6(c)]. Thus the only
kinetic exchange revealed by the direct simulation is tor-
sion of the closed β-hairpin associated with a time scale
of 2.5 ns [Fig. 6(b)]. Note that this MSM is not a refer-
ence solution since the slowest process—the rearrangement
of the hydrogen bonds—has not been observed in the direct
simulation.

1. Metadynamics/Girsanov reweighting
on rerun simulations

We have built a metadynamics potential in the space
of the distances r2, r4, and r6 [Fig. 6(c)] by conducting
50 ns of well-tempered metadynamics. From the time evo-
lution of the metadynamics potential on the relevant coordi-
nates r2 and r4, we deduce that the bias is far from conver-
gence [Fig. 3(c)]. Indeed, the metadynamics potential does
not relax toward a constant function, but it is subjected to
relevant fluctuations. Moreover, we cannot distinguish basins
of metastable states. Only the potential on the distance r6

relaxed toward an almost stable profile that suggests the exis-
tence of two metastable regions. On the other hand, during
this build-up phase, the β-hairpin did not only open but
in fact sampled completely extended structures. As before,
we scaled the obtained potential by a factor of 0.1 and
used it as a constant bias in 1.4 µs of metadynamics rerun
simulations.

To gauge the sampling in this biased simulation, we con-
structed tICA-MSMs without reweighting [Fig. 7(a), top row].
Additionally to the planar hairpin (structure A) and the twisted
hairpin (structure B), we found a half-open structure C in which
the hydrogen bonds toward the end of the β-hairpin are broken
[Fig. 7(d)]. The most extended conformation sampled by the
metadynamics simulation is the structure D [Fig. 7(d)]. The
eigenvectors of the reweighted MSMs are shown in the bot-
tom line of Fig. 7(a). The extended structure D is now located
on a barrier, while structures A, B, and C are still minima.
The slowest process is the exchange between the half-open
structure D and the two fully formed β-hairpin structures. The
associated implied time scale is in the range of 100 ns to 1
µs [Fig. 7(b)]. The second slowest process is the exchange
between the planar β-hairpin (structure A) and the twisted

FIG. 6. β-hairpin, reference simulation. (a) First three
tICA eigenvectors. (b) Implied time scale associated with
the second tICA eigenvector. (c) Conformations A and B.



072335-13 L. Donati and B. G. Keller J. Chem. Phys. 149, 072335 (2018)

FIG. 7. β-hairpin, metadynamics simulation. (a) First three tICA eigenvectors. First row: rerun simulation, second row: rerun reweighting. (b) Implied time
scale associated with the second eigenvector (reweighting). (c) Frequency of the structures A, B, C, and D (red, left axis); r1 to r6 distances in nm, blue columns
from left to right (right axis). (d) Conformations A, B, C, and D.

hairpin (structure B). Figure 6(c) shows the reweighted rela-
tive population of the four structures (red bars) and the distance
of the hydrogen-bonds r1, r2, r3, r4, r5, and r6 connecting,
respectively, the residues 1-16, 2-15, 3-14, 4-13, 5-12, and 6-11
(blue bars).

V. DISCUSSION AND CONCLUSION

We have presented an application of the Girsanov
reweighting scheme38,39 to metadynamics,3–6 to recover the
correct dynamic properties of a molecular system from an
enhanced sampling simulation. We have studied two possi-
ble strategies. In the first one, that we called rerun, we have
first built a metadynamics bias, then we have rerun a sim-
ulation with the bias as a constant function and we applied
the Girsanov reweighting on the trajectory produced by the
second simulation. In the second strategy, we have applied
the Girsanov reweighting directly during the build up phase
of the metadynamics simulation, exploiting the validity of
the Girsanov theorem for time-dependent perturbations. Both
approaches recovered the correct unbiased dynamics for a wide
range of systems.

The major difference between the Girsanov reweight-
ing method and other dynamic reweighting methods32–36 is
that the probability density of each possible path of length
τ connecting two points x0 = x and xn = y is reweighted
and not the MSM transition probability as such. To reweight
path probability densities, two prerequisites need to be ful-
filled: (i) the equation of motion of the molecular systems
needs to contain a normal random noise term (Langevin
dynamics or Brownian dynamics); (ii) the gradient ∇iU(r)
and the random numbers need to be evaluated for each inte-
gration time step to obtain the path probability ratio Mτ ,x(ω)
[Eq. (18)]. The first condition is easily satisfied by using a
Langevin thermostat to maintain the temperature. The ran-
dom forces from this thermostat then serve as the random
noise term.39 The second condition, in principle, requires
that the two properties are written to file for each integra-
tor time step, which is not practical. However, if the bias
is known for each time step of the simulation, as in meta-
dynamics, two properties can be evaluated on the fly and
interim results for Mτ ,x(ω) are written to file at the same
frequency as the coordinates. For this approach, the inte-
grator of the MD simulation program needs to be modified
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accordingly,39 which is unproblematic in modular MD codes,
such as OpenMM.45

Thus in practice, Girsanov reweighting is not an anal-
ysis method that can be used independent of the MD sim-
ulation, but it is intertwined with the MD simulation pro-
gram. This slightly more complex set-up pays off in two
ways. First, one does not need to assume that the system
is in local equilibrium within a state Bi before it transitions
to a state Bj. Second, Girsanov reweighting can be used to
reweight arbitrary time-lagged correlation functions [Eq. (2)]
and is not limited to transition counts. In particular, it can
be used directly to reweight Markov models with advanced
discretization methods, such as tICA,54,55 variational Markov
models58,59 or core-set models.60,61 Girsanov reweight-
ing is closely related to the Onsager-Machlup action62–66

and path reweighting methods for parallel tempering
simulations.29–31

A critical assumption in metadynamics is that the collec-
tive variables, along which the metadynamics potential is built
up, are aligned with the slow conformational transitions of
the system such that the sampling in the degrees of freedom
orthogonal to the collective variables is fast. This condition
also needs to be fulfilled when applying Girsanov reweighting
to a metadynamics simulation. In this contribution, we have
therefore chosen systems with known collective variables.
Once a suitable set of collective variables for the metadynamics
simulations is known, it can be re-used as reaction coordinates
for the discretization of the MSM, thus yielding MSMs with a
small discretization error.

It is important to point out that the variance of the Girsanov
reweighting estimator is a critical factor in the metadynam-
ics/Girsanov reweighting method. It depends on the gradient
of the bias, the length of the paths τ (i.e., the MSM lag time),
and the number of paths of length τ (i.e., the sampling in
the rerun simulations). The gradient of the bias can be con-
trolled by scaling the metadynamics potential. Our results have
shown that a fully converged metadynamics potential is usu-
ally not the optimal choice but that suitable balance between
the speed-up of the simulation and suitable variance of the
Girsanov reweighting estimator can be achieved by rescal-
ing the potential by a factor of 0.1. The lag time τ can be
decreased by reducing the MSM discretization error. The fact
that a metadynamics simulation is only possible if a suitable
set of collective variables is known simplifies the search for a
good discretization drastically. The lag time could further be
reduced by using advanced discretization methods54,55,58–61 in
the space of the collective variables. Finally, the length of the
rerun simulation is limited by the available computer resources
and by the obvious requirement that computational costs of
a rerun simulation should be lower than those of a direct
simulation.

In conclusion, metadynamics/Girsanov-reweighting is a
valuable tool for obtaining dynamic properties, including
MSMs and Markov models with advanced discretizations,
from enhanced sampling simulations. Our results show that
metadynamics/Girsanov-reweighting considerably decreases
the computational costs of Markov models, and we expect
that this will make Markov models amenable to a wider circle
of scientists.
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Theory Comput. 11, 5525 (2015).

57F. Vitalini, A. S. J. S. Mey, F. Noé, B. G. Keller, F. Vitalini, A. S.
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59F. Vitalini, F. Noé, and B. G. Keller, J. Chem. Theory Comput. 11, 3992
(2015).
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