Takudrei

090
Helicate, Macrocycle, or Catenate: Dynamic Topological Control over Subcomponent Self-Assembly

M. Hutin, C. A. Schalley, G. Bernardinelli, J. R. Nitschke— 2006

The aqueous reaction between equimolar amounts of 2-(2-(2-aminoethoxy)ethoxy)ethanamine, 1,10-phenanthroline-2,9-dialdehyde and copper(I) produced a dimeric helical macrocycle in quantitative yield. This ring could also be generated by the addition of two equivalents of the diamine to an acyclic helicate containing four mono-imine residues: A transimination occurred, the chelate effect being implicated as a driving force. In the case of a helicate containing mono-imines derived from anilines, the substitution of diamine for monoamine was reversible upon lowering the pH. The aliphatic diamine was protonated at a higher pH than the arylamine, which left the arylamine free for incorporation instead of the alkyl diamine. This reaction thus opened the possibility of switching between closed macrocyclic and open helicate topologies by changing the pH. An additional closed topology became accessible through the use of a diamine that incorporates two rigid phenylene spacer groups between a flexible chain and the imine-forming nitrogen atoms. The resulting catenate consists of a pair of topologically interlinked macrocycles. The presence of the phenylene groups appeared to dictate the topology of the final product, making the formation of a single macrocycle energetically disfavoured.

Title090
Helicate, Macrocycle, or Catenate: Dynamic Topological Control over Subcomponent Self-Assembly
AuthorM. Hutin, C. A. Schalley, G. Bernardinelli, J. R. Nitschke
Date20060314
IdentifierDOI 10.1002/chem.200501591
Source(s)
CitationChem. Eur. J. 2006, 12, 4069-4076