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INTRODUCTION

In 1984, Hawkins and Kandel published a seminal
paper titled “Is There a Cell-Biological Alphabet for
Simple Forms of Learning?”.1 Based on their early
findings of the cooperative regulation of adenylyl
cyclase in sensory neurons of Aplysia, an overarching
concept was presented which opened our mind to
molecular mechanisms of experience-dependent neural
plasticity. Several basic forms of nonassociative and
associative learning (habituation, sensitization, and
classical conditioning) were explained on the level of
rather simple molecular reaction cascades in specific
neurons. At that time, these were radical ideas, and
even today we struggle with the question whether
cognitive faculties such as learning and memory for-
mation can be reduced to ubiquitous cellular functions,
and what such a reduction might mean. The concepts
presented in this paper were also radical in the sense
that they broke with the speculation that the informa-
tion of acquired memories is stored in molecules like
RNA. Meanwhile, it is well accepted in neuroscience
that neural circuits acquire new information by
changing network properties on the level of specified
neurons and their synaptic connections. Multiple key
elements contribute to these adaptations, and it is the
task of today’s neuroscience to unravel the complex
hierarchies of interactions from the molecular to the
systems level in solving the problem of predicting
future behavior from experience in the past.

Invertebrate nervous systems, because of their rela-
tive simplicity, offer significant advantages for multidis-
ciplinary molecular, cellular, genetic, and behavioral
investigations of the mechanisms underlying learning,
memory formation, and memory retrieval. Memory

formation in invertebrates occurs within small circuits
containing a few hundred neurons rather than the
millions of the mammalian brain, and it is often possi-
ble to study the role of individual neurons that play a
key role in these adaptive neural processes. Because
of this tractability of invertebrate model systems, many
important discoveries have been made in invertebrates
(e.g., the role of second messengers such as cAMP,
protein kinases, and transcription factors such as
CREB (Chapters 15�18, 20, 27, 31, and 35); the role of
neural plasticity in addition to and separate from
synaptic plasticity (Chapters 14, 15, 19, 20, and 35);
the function of identified neurons in the evaluating
pathways (examples in many chapters in Section 4);
and the differential role of circuits in storing and
retrieving memory (Chapters 27, 29, and 31)) that
have been found to be generally applicable to higher
organisms. The discovery that synaptic plasticity
involves both pre- and postsynaptic interactive pro-
cesses characteristic of Hebbian long-term potentia-
tion in vertebrates again emphasizes the general
importance of the results from invertebrate systems
(Chapters 17 and 24). Furthermore, a good deal of
information is emerging on the molecular and neural
mechanisms underlying the different phases of mem-
ory consolidation (from short-term to intermediate-
term and long-term memory). Training triggers a
cascade of molecular events with phase-dependent
requirements for protein kinases (Chapters 16�18, 27,
31, and 35) and neuropeptides (Chapter 17). A fasci-
nating recent discovery is that a self-sustaining
prion-like protein ApCPEB (Aplysia cytoplasmic
polyadenylation element binding protein) is involved
in memory maintenance promoting persistent facili-
tation of synaptic transmission (Chapter 17).
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BEYOND THE CELLULAR ALPHABET:
CIRCUIT AND NETWORK LEVELS OF
ANALYSIS, THE NECESSARY STEP

The previous cellular studies emphasized changes
at a single locus. However, there is increasing evidence
that most forms of learning in invertebrates involve
changes at multiple sites in the brain (e.g., Chapters
14, 19, 25, 27, and 29). The identification of these multi-
ple sites of plasticity requires a systems approach to
the analysis of learning and memory, which makes it
important to first identify the electrical changes that
result from training and then attempt to relate these
changes to behavioral plasticity. The role of individual
neurons and their synaptic connectivity can then be
investigated in the context of behavior in a ‘top-down’
approach. The ability to identify changes in sensory,
interneuronal, and motoneuron pathways contributing
to the learning process has been one of the successes
of this systems approach to invertebrate learning and
memory. From this work, it is realized that we cannot
hope to understand the nature of the ‘engram’ without
a knowledge of the electrical and cellular changes
at all levels of the networks involved in establishing
and retrieving the engram (Chapters 14, 19, 29, and 36).
This systems analysis is far from complete, especially
in the more complex behaviors of social insects and
cephalopod mollusks, but considerable progress has
been made. Computational modeling of learning net-
works is an important component of the systems
approach (Chapter 7), and links to robotics (Chapter 8)
are providing a complementary type of approach to
understanding adaptive behavior in invertebrates.

Will it be ever possible to “read” the content of the
memory trace, the engram? This question requires a
shift from the analysis of mechanisms to that of
processes. Finally, we want to understand where and
how particular memory contents are stored, and how
they are activated for behavioral control. A helpful but
rather simple-minded approach is to visualize the
changes of neural functions in the course of learning.
Such an approach is manifested in the search for struc-
tural plasticity as induced during long-term memory
formation (Chapter 31) or in the calculation of changes
of patterns in neural activity before and after learning
(Chapters 14, 20, and 29). These patterns of changes,
both in time and in space, should constitute the engram
as read by the complete nervous system of the respec-
tive animal, and may be even accessible to the human
mind for elementary forms of learning that lead to
memory traces in restricted parts of the nervous system.
However, even in invertebrates the engram will usually
involve several to many circuits distributed throughout
the nervous system, making it very difficult to relate
stored information to neural circuits. The conceptual

and experimental problems should not demotivate us
to hunt for the engram by shifting our attempts from
single neuron analysis to network analyses. Indeed,
such a shift appears achievable with molecular-genetic
techniques in Caenorhabditis elegans (Chapters 9�13) and
Drosophila (Chapters 5 and 27).

DO INVERTEBRATES HAVE
COGNITIVE ABILITIES?

Despite having small brains, invertebrates show a
remarkable ability to carry out complex tasks in their
natural environment, to learn and to form long-term
memory through stepwise consolidation processes.
Suggesting that invertebrate animals have cognitive
abilities implies that they have sophisticated behav-
ioral capabilities that transcend the elementary forms
of adaptive responses to environmental changes. It
requires the selection of different options from a reper-
toire of learned behaviors that allows an animal to
respond selectively to novel external stimuli. It is clear
that insects, particularly social insects, have this kind
of capability (Chapter 3) but also cephalopod mollusks
(Chapters 23 and 25) and perhaps terrestrial slugs
(Chapter 22). It is interesting that all three groups of
animals have special learning ‘centers’ in the brains
(mushroom body in insects, vertical lobes in octopus,
and procerebral lobes in terrestrial slugs) with intricate
interneuronal organization that would be required for
complex information processing at the neural level.
Cognitive behavior is suggested by examples of explo-
ration, instrumental and observation learning, expecta-
tion, learning in a social context, and planning of
future actions (Chapters 3, 23, and 25). In some exam-
ples, such as second-order conditioning, it is possible
to suggest neural network mechanisms derived from
the neural network models of simple forms of first-
order conditioning (Chapter 14), but in most examples
we have little or no knowledge of the neural mechan-
isms involved. Computational modeling where explicit
mechanisms have to be proposed may be useful here
(Chapters 7 and 8). Until we have more detailed infor-
mation on the mechanisms and processes involved
in examples of cognitive behaviors, it will be difficult
to know whether cognitive mechanisms have unique
information processing compared with ‘noncognitive’
adaptive behaviors. Could it be that the most complex
forms of invertebrate cognitive behavior represent a
loop too difficult to close in terms of neural mechan-
isms? As in other disciplines, cognitive neuroscience
advances depend on new methods and new concepts,
probably in this order. Invertebrate neuroscience
works at the forefront of both aspects, methods and
concepts (Chapters 5, 6, and 8). Transgenic or
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transfected animals will offer opportunities particu-
larly when combined with recording techniques. We
are facing an exciting future of invertebrate neurosci-
ence, and we hope this volume will help to prepare for
these endeavors.
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