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a b s t r a c t

Visual attention is commonly studied by using visuo-spatial cues indicating probable locations of a target
and assessing the effect of the validity of the cue on perceptual performance and its neural correlates.
Here, we adapt a cueing task to measure spatial cueing effects on the decisions of honeybees and compare
their behavior to that of humans and monkeys in a similarly structured two-alternative forced-choice
perceptual task. Unlike the typical cueing paradigm in which the stimulus strength remains unchanged
within a block of trials, for the monkey and human studies we randomized the contrast of the signal to
simulate more real world conditions in which the organism is uncertain about the strength of the signal.
A Bayesian ideal observer that weights sensory evidence from cued and uncued locations based on the
cue validity to maximize overall performance is used as a benchmark of comparison against the three ani-
mals and other suboptimal models: probability matching, ignore the cue, always follow the cue, and an
additive bias/single decision threshold model. We find that the cueing effect is pervasive across all three
species but is smaller in size than that shown by the Bayesian ideal observer. Humans show a larger cue-
ing effect than monkeys and bees show the smallest effect. The cueing effect and overall performance of
the honeybees allows rejection of the models in which the bees are ignoring the cue, following the cue
and disregarding stimuli to be discriminated, or adopting a probability matching strategy. Stimulus
strength uncertainty also reduces the theoretically predicted variation in cueing effect with stimulus
strength of an optimal Bayesian observer and diminishes the size of the cueing effect when stimulus
strength is low. A more biologically plausible model that includes an additive bias to the sensory response
from the cued location, although not mathematically equivalent to the optimal observer for the case
stimulus strength uncertainty, can approximate the benefits of the more computationally complex opti-
mal Bayesian model. We discuss the implications of our findings on the field’s common conceptualization
of covert visual attention in the cueing task and what aspects, if any, might be unique to humans.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Spatial cues have important effects on perceptual performance
(Carrasco, 2011; Luck et al., 1996; Palmer, Ames, & Lindsey,
1993; Posner, 1980) and the response of neurons in the primate
brain (Cook & Maunsell, 2002; Maunsell & Cook, 2002). In the
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study of human visual attention, spatial cues predicting the prob-
able location of a target are commonly used as an operational
manipulation of covert visual attention. The typical result is that
the response times are reduced or the accuracy is increased for
trials in which the target appears at the cued location (valid cue-
trials) compared to those trials in which the target appears at the
uncued location (invalid cue-trials). Although there are many the-
ories (Bundesen, 1990; Bundesen, Habekost, & Kyllingsbaek, 2005;
Eckstein, Shimozaki, & Abbey, 2002; Eckstein et al., 2009; Eriksen &
St. James, 1986; Posner, Snyder, & Davidson, 1980; Shimozaki,
Eckstein, & Abbey, 2003; Smith & Ratcliff, 2009; Vincent, 2011)
proposing a variety of mechanisms to account for the typical
improvement in perceptual performance when targets appear at
cued locations, most of theories interpret the cue-effect as a
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Fig. 1. (a) Sequence of presentation of images for a trial for monkeys and humans. In neutral sessions, both bounding boxes remained black during the precue period. For
monkey experiments, a small volume of fruit juice was dispensed for correct responses. (b) Photograph of box arrangement with target, distractor and cue for honey bee task
conducted in Free University of Berlin. Photograph depicts the zero signal to noise ratio condition for which the target and distractor papers are the same (blue).

1 For the honey bees, there were mini-blocks in which the bees were trained on one
signal strength and then tested in that same signal strength. The exception was the
zero signal strength condition which was interleaved with the other two conditions.
So although the signal strengths presentations did not adhere to the absolute
randomization, the stimulus strength uncertainty theoretical predictions are still a
realistic model for the bees because each bee might have limited exposure to each
stimulus and manifest some intrinsic uncertainty about stimulus strength.
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consequence of visual attention being allocated to the cued location.
The common assumption is that the spatial cueing effects are med-
iated by the same mechanism which mediates human ability, under
verbal instruction or one’s own will, to select or attend regions of the
visual field without an eye movement: covert visual attention. A
common implicit notion in the study of visual attention is that it
might be unique to primates, mammals, or vertebrates at the most.
Exhaustively assessing whether an organism shows behavioral evi-
dence of mechanisms akin to human visual attention is difficult be-
cause visual attention has multiple working definitions, associated
tasks, and assessments (Pashler, 1999). Yet, what can be assessed
is how an organism behaves in one of the most common tasks used
to study visual attention: the spatial cueing task.

Studies have shown that monkeys (Cook & Maunsell, 2002;
Maunsell & Cook, 2002), rats (Bushnell & Rice, 1999; Marote &
Xavier, 2011) and pigeons (Shimp & Friedrich, 1993) all use predic-
tive cues and show cueing effects. But does an organism with a small
brain and no cortical structure also use predictive cues and give rise
to a behavioral cueing effect? Here, we explore the effect of spatial
cues on the decisions of honeybees. The goal of the current paper
is to compare the effect of spatial cues on the decisions of humans,
monkeys and bees in a spatial cueing task with a similar structure.
Although there is a large literature on how bees can learn associa-
tions (Stach, Benard, & Giurfa, 2004), discrimination between visual
elements (Avarguès-Weber et al., 2010) and visual landmarks to
navigate (Horridge, 2006; Lehrer, 1994), bees have not been tested
in a cueing paradigm in which two visual stimuli have to be discrim-
inated and a highly-visible cue is probabilistically predictive of the
target location. Comparison across species might allow us to assess
what nervous system requirements are needed to implement under-
lying computations associated with a cueing effect and also high-
light the unique aspects of human visual attention in the context
of the spatial cue paradigm. As a benchmark we compare the cueing
effects present in the three animals to that of an optimal Bayesian
observer which uses the cues to weight sensory evidence about
the presence of the target by a prior probability determined by the
cue validity to maximize the proportion correct decisions. In addi-
tion, we compare the measured cueing effects against various mod-
els: a model that ignores the cue, a model that always follows the
cue, a probability matching model, and an additive bias which is
equivalent to a single optimized threshold model.

We use a simple modified two-alternative forced-choice cueing
paradigm (Green & Swets, 1989) for all three species (Fig. 1). The
complexity of the more common cueing paradigm (yes/no task
with location uncertainty) makes it too difficult for successful
training of the honeybees. In the two alternative forced choice cue-
ing paradigm, the target appears in one of two locations with equal
probability and a highly visible cue which appears randomly at one
of the two locations indicates with q% validity (e.g., 75%) the likely
location of the target. For the monkeys and humans, we consider a
novel variation for which there is external stimulus strength
uncertainty (target/distractor discriminability variation unknown
to the organism).1 Models have been traditionally applied to cueing
paradigms in which the signal strength is kept constant (Eckstein,
Shimozaki, & Abbey, 2002; Liston & Stone, 2008) and assumed to
be known by the organism (but see Ma, 2010; Schoonveld, Shimo-
zaki, & Eckstein, 2007; Vincent et al., 2009 for Bayesian optimal
modeling for signal/distractor uncertainty in visual search). How-
ever, in the real world organisms often do not know in advance
how detectable or discriminable will the target be. The question
arises as to how stimulus strength uncertainty affects the optimal
decision rule and its predicted cueing effect. Monkeys and humans
indicated their decision by making an eye movement towards the
target location (Fig. 1a). Honeybees’ selection was based on the
bee circling close to the box, resting or entering one of two box
choices (Fig. 1b).
2. Theory

Cueing effects have been traditionally attributed to the larger
allocation of limited resources to a cued location relative to the un-
cued location (Posner, 1980; Posner, Snyder, & Davidson, 1980).
However, going back to work from the 1980s, investigators have
considered the behavior of models that use simple decision rules
acting on sensory processing that is subject to stochastic noise
(Kinchla, 1992; Kinchla, Chen, & Evert, 1995; Shaw, 1980, 1984).
In this framework, valid cues can have beneficial effects on percep-
tual performance by allowing the organism to better integrate or
select sensory information relevant to the task and to allow to
ignore or down-weight sensory information from potential noisy
only locations. In these models, valid cues indicating the probable
location of a target or reducing the number of physical distracters
(set-size) benefits performance without postulating any limited
resource mechanism. Studies have shown that there are
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Fig. 2. (a) Bayesian ideal observer for 2 AFC cueing task for the scenario of signal strength uncertainty; (b) Additive bias model in which the response from the cued location
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circumstances for which cues benefit performance beyond what is
predicted by these unlimited capacity models (Carrasco, Penpeci-
Talgar, & Eckstein, 2000; Dosher & Lu, 2000). However, these stud-
ies do not negate the role of optimizing selection and integration of
noisy sensory information as a core neural mechanism to improve
perceptual performance but rather indicate that there are circum-
stances in which there is an additional improvement due to other
processes related to limited capacity.

Here, we consider the possible decision rules an organism might
follow when confronted with a highly visible spatial cue that is
predictive of the location of the signal in a 2-alternative forced
choice. We investigate various models to account for the behav-
ioral choices for the case in which there is external signal strength
uncertainty (target/distractor discriminability variation). The opti-
mal Bayesian model2 in the cueing task has been investigated for
case in which the signal strength is kept constant and assumed to
be known by the model but not for the more realistic case of signal
strength uncertainty (Fig. 2a). For comparison, we show predictions
for the more common task for which the signal strength is blocked
2 For the Bayesian ideal observer, we define ‘‘optimal’’ to mean maximizing the
overall proportion of correct responses (Green and Swets, 1966, chap. 1.7.3).
and considered to be known to the organism. Below, we describe
the task and each of the models considered.

2.1. Two alternative forced choice tasks

In a two-alternative forced-choice task (2AFC), the organism is
instructed or trained to detect a target that appears always in one
of two locations and decide which location contains the target
(Fig. 1). Typically the target is defined to have a different contrast
luminance, orientation, motion speed or direction than the dis-
tractors. We will use the term target–distractor discriminability
to refer to the difference along the dimension of interest between
the target and distractor. Importantly, in a spatial attention task
the target co-occurs with a highly visible spatial cue q% of the
trials.

2.2. General theoretical framework for the models

All models discussed below are presented within the frame-
work of signal detection theory (Green & Swets, 1989; see Fig. 2
for examples) which assumes the target and distractor elicit an
internal response subject to variability (noise). The variability is
commonly assumed to be of equal variance and Gaussian with
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the target eliciting a higher mean response. The target/distactor
discriminability is then typically represented in terms of the differ-
ence between the mean response to the target and distractor di-
vided by the standard deviation of the response. This metric is
known as d0, the index of detectability.
Signal Strength Uncertainty
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Fig. 3. Performance predictions (proportion correct) as a function of stimulus strength (d0

the cueing effect. Models include the Bayeisian ideal observer (BIO); ignore cue model; ad
model. Left column corresponds to a scenario in which there is uncertainty about the st
between 0 and 4.0. The right column corresponds to a scenario in which the signal stre
2.3. Always select cue decision rule (ignore the sensory evidence)

A first simple rule is to always choose the location co-occurring
with the spatial cue and ignore the sensory evidence. This decision
rule will maximize the cueing effect (proportion correct valid –
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ditive bias/single threshold model; probability matching and always follow the cue
rength of the signal sampled with equal probability from ten d0s at equal intervals
ngth is blocked and known to the observers.
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proportion correct invalid trials = 1.0) and lead to correct trials in
the q% of the trials for which the target occurs with the cue and will
be incorrect in the (1 � q)% of trials for which the signal appears at
the uncued location. Fig. 3 shows performance for a cue validity (q)
of 75% across various signal strengths parameterized in terms of (d0

on the x-axis). Note that this model’s performance does not depend
on the signal strength because the decision rule ignores sensory
evidence arising from the stimulus. The model is also invariant to
whether the signal strength is known or not.

2.4. Probability matching

This classic model (Hickson, 1961; Neimark & Shuford, 1959;
Wozny, Beierholm, & Shams, 2010) posits that the organism will
make selections based on the base rates. In the context of the spa-
tial cueing task, the model chooses the cued location q% of the tri-
als and the uncued location (1 � q)% of the trials. The decision
strategy’s probability of a correct choice for the 2 AFC task is given
by the joint probability that the model chooses the cued location
(q) and that the cued location contains the target (q) added to
the joint probability that the model chooses the uncued location
(1 � q) and that the uncued location contains the target (1 � q):

P ¼ q2 þ ð1� qÞ2 ð1Þ

The probability-matching model also ignores the sensory evi-
dence about signal presence and thus it predicts a fixed proportion
correct performance as a function of signal contrast and irrespec-
tive of whether the stimulus strength is blocked or randomized
(Fig. 3).

2.5. Optimal Bayesian decision rule

One important decision rule within statistical decision theory is
that of the Bayesian ideal observer (BIO; Geisler, 2003, 2011;
Kersten, Mamassian, & Yuille, 2004; Maloney & Zhang, 2010)
which specifies the optimal visual processing algorithm to make
decisions in the presence of noise and uncertainty. For the context
of visual attention in cueing (Eckstein, Shimozaki, & Abbey, 2002;
Eckstein et al., 2009; Liston & Stone, 2008; Shimozaki, Eckstein, &
Abbey, 2003; Shimozaki, Schoonveld, & Eckstein, 2012; Yu &
Dayan, 2005) and search paradigms (Eckstein et al., 2009; Ma
et al., 2011; Vincent et al., 2009), the model posits the optimal
method to integrate sensory information across locations cued/
uncued locations with varying validities and reach a decision. This
approach has been applied to hypothesized internal responses
within the human as well as descriptions of the responses of bio-
logically plausible sensory units (Eckstein et al., 2009; Ma, 2010).
The Bayesian ideal observer computes the probability of each of
Hi hypothesis given the sensory scalar response P(Hi|x) by combin-
ing sensory evidence (likelihood of observed sensory response
given the event Hi, P(x|Hi)), with prior probabilities of each hypoth-
esis Hi occurring, (P(Hi), (Green & Swets, 1989; Peterson, Birdsall, &
Fox, 1954):

PðHijxÞ ¼
PðxjHiÞPðHiÞ

PðxÞ ð2Þ

The denominator refers to the probability of the sensory data
over all possible hypotheses, Hi, and is typically a normalization
factor that is constant across Hi. The spatial cues provide (either
through training or verbal instruction) information about the likely
locations to contain a target. The Bayesian ideal observer (BIO) pos-
its the optimal use of this prior knowledge by combining noisy sen-
sory data in order to maximize overall accuracy across valid and
invalid cue trials. In many cases the BIO is related to simpler signal
detection decision rules such as the maximum response model
(Baldassi & Verghese, 2002; Cameron et al., 2004; Eckstein, Pham,
& Shimozaki, 2004; Palmer, Ames, & Lindsey, 1993; Palmer,
Verghese, & Pavel, 2000; Pestilli et al., 2011; Verghese, 2001).
The Bayesian ideal observer can capture the behavioral benefits
from the presence of informative cues and/or number of cues
without positing any limited resources (Eckstein, Drescher, &
Shimozaki, 2006; Eckstein, Pham, & Shimozaki, 2004; Eckstein,
Shimozaki, & Abbey, 2002; Shimozaki, Eckstein, & Abbey, 2003;
Vincent, 2011; Vincent et al., 2009).

2.6. Signal strength known (blocked condition)

For the case of a signal intensity of known constant stimulus
strength (d0) it is a well-known result (Green & Swets, 1989; see
Appendix A for derivation) that the ideal observer weights the like-
lihood ratio (LR) of the cued location by the cue validity and the
likelihood ratio of the uncued location by 1 – the cue validity.
The model then compares the weighted likelihood ratios across
the two locations and chooses the maximum:

If pcLRc > puLRu then choose cued location; ð3Þ

otherwise, choose uncued location; where the LR is given by (see
Appendix A for full derivation):

LRi ¼ expðxid
0Þ ð4Þ

where xi is the sensory response at location i (subscripts c, cued or u,
uncued) and d0 is the index of detectability. Equivalently, one can
take the logarithm of the weighted likelihood ratios, divide by d0

and make a decision based on the following rule:

If xc þ
1
d0

log
pc

pu

� �
> xu then choose the cued locations;

otherwise choose the uncued location: ð5Þ

Proportion correct for valid (Pvalid) and cue invalid trials
(Pinvalid) in the 2 AFC can be computed for this model using a
closed form expression which calculates the probability that
the decision variable from the location containing the target ex-
ceed the decision variable from the location not containing the
target:

Pvalid ¼
Z þ1

�1
/ x� d0 � 1

d0
log

pc

pu

� �� �
UðxÞdx ð6Þ

Pinvalid ¼
Z þ1

�1
/ðx� d0ÞU x� 1

d0
log

pc

pu

� �� �
dx ð7Þ

where

/ðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p exp

x2

2

� �
and UðxÞ ¼

Z x

�1
/ðyÞdy ð8Þ

Overall proportion correct can be calculated as:

Poverall ¼ pcPvalid þ puPinvalid ð9Þ

Fig. 3 (right column) shows proportion correct for this model for
ten different signal strengths (d0s at equal intervals from 0 to 4.0)
for valid and invalid cue trials. For the optimal Bayesian observer,
the cueing effect arises as a byproduct of higher weighting of the
sensory evidence arising from the cued location. Fig. 3 (bottom
graph, cueing effect) also shows that for the 2 AFC task the cueing
effect diminishes with signal strength (d0).

2.7. Signal strength uncertainty

For the case of signal strength uncertainty the model integrates
for each ith hypothesis (target left vs. right) the sensory evidence
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across the J mutually exclusive possible indices of detectability
(d0j):

PðHijxÞ ¼
PðHiÞ

PJ
j¼1PðxjHi;d

0
jÞ

PðxÞ ð10Þ

where P(Hi) is the prior probability of the ith hypothesis and
PðxjHi;d

0
jÞ is the likelihood of the sensory data given that the signal

is at the ith location with jth index of detectability. For the case of
the 2 AFC spatial cueing task the decision rule of the optimal
observers becomes (Peterson, Birdsall, & Fox, 1954):

If pc

XJ

j¼1

LRc;j >pu

XJ

j¼1

LRu;j then choose cued location otherwise

choose the uncued location ð11Þ

where3

LRj ¼ expðxd0j � 0:5d02j Þ: ð12Þ

Fig. 2a shows a schematic of the model for signal uncertainty
case. Performance of this model was calculated using simulations.
Fig. 3 (left column) shows proportion correct for the ideal observer
for 10 different d0s (equal intervals between d0 = 0 and 4.0) that are
randomly interleaved and unknown to the model. Comparisons of
performance in the signal strength known vs. signal strength
uncertainty condition shows that uncertainty reduces the variation
of the cueing effect with d0. In particular, the cueing effect at
the zero d0 trials is reduced significantly (see bottom graphs,
cueing effect, in Fig. 3). Fig. 4 shows the maximum cueing effect
(Pvalid � Pinvalid at d0 = 0) for an optimal Bayesian observer with
increasing uncertainty about signal strength (number of d0s sam-
pled regularly between d0 = 0 and d0 = 4.0). Results show how the
maximum cueing effect of the model diminishes with signal
strength uncertainty but asymptotes due to the upper limit on d0.

2.8. Decision based only on the sensory evidence (ignore the cue)

This strategy ignores the cue and chooses the location on each
trial solely based on sensory evidence in the stimuli. The model
compares the two internal responses elicited by the two locations
3 Note that for the case of stimulus strength uncertainty for which likelihood ratios
are summed, there is an additional term (�0.5d02) which cannot be simplified as in
the case of no stimulus uncertainty (Eq. (4)).
on every trial and chooses the location that elicits the highest
internal response:

If xc > xu then choose cued location (H1) otherwise choose the
uncued location (H2).

Ignoring the cue leads to equivalent accuracy in cue-valid and
invalid trials and thus no cueing effect. This model’s proportion
correct would reduce to the standard 2 AFC signal detection model
(Green & Swets, 1989):

P ¼
Z þ1

�1
/ðx� d0ÞUðxÞdx ð13Þ

where UðxÞ ¼
R x
�1 /ðyÞdy and / is as defined before Eq. (7). Fig. 3

shows performance for this strategy as a function of stimulus
strength with no cueing effect and inferior overall performance to
the optimal Bayesian observer in particular in conditions with low
stimulus strength, d0.

2.9. Additive bias/single decision threshold model (AB/ST)

A common model that has been proposed previously for the 2
AFC spatial cueing task is a simple model which compares the
internal responses from cued and uncued locations to make a deci-
sion but simply biases its choices based on the cue validity by
adjusting a decision threshold (Shaw, 1980; Sperling & Dosher,
1986; see Fig. 2b):

If xc � xu > t then choose cued location; otherwise;
choose uncued location: ð14Þ

For the case in which the target is equal likely at both locations,
maximizing proportion correct decisions across all trial types re-
quires setting t = 0. For the case in which the signal is more likely
to occur at the cued location t is set to a negative number requiring
less sensory evidence to favor the cued location.

Equivalently, the single threshold model can be expressed in
terms of an additive bias (b) added to the cued location followed
by a comparison of responses across locations:

If xc þ b >xu then choose cued location; otherwise;
choose uncued location: ð15Þ

The advantage of the additive bias is that it is simple to imple-
ment biologically and is consistent with a variety of results show-
ing biasing of neural responses by attentional manipulations
(Gandhi, Heeger, & Boynton, 1999). Importantly, if the bias b is
equal to 1

d0
logðpc

pu
Þ then this algorithm is mathematically equivalent

to the optimal Bayesian decision rule for the case of signal strength
known (Eq. (5); (Green & Swets, 1989)). However, using the AB/ST
model is not mathematically equivalent to the optimal Bayesian
rule in the signal strength uncertainty condition. The optimal
Bayesian algorithm makes a non-linear accelerating transforma-
tion of internal responses for cued and uncued locations assuming
the various possible signal strengths (likelihoods), then sums the
likelihoods and multiplies the cued and uncued location sum of
likelihoods by the priors. The non-linear transformation leads to
a larger influence of the priors (and larger cue effects) for low sig-
nal strength trials when compared to high signal strength trials.

The AB/ST model does not have any non-linear accelerating
transformation of the internal responses. Instead, it makes deci-
sions by operating simply on the internal responses themselves
and compares the difference in responses to cued and uncued loca-
tions to a decision threshold.

Unknown is how performance of the single threshold model
compares to that of an optimal Bayesian for the case of signal
strength uncertainty. Fig. 3 (top graph) shows that optimizing
the bias, b, to achieve maximal overall accuracy for this model
can attain an overall accuracy (averaged across the ten indices of
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detectability) that is 0.5% lower than that achieved by the optimal
Bayesian decision rule. The differences between the accuracies of
the models are the greatest at low d0 values (5%). The lack of the
non-linear transformation of the AB/ST model leads to lower (sub-
optimal) variation of the influence of the cue with signal strength
but this cost in performance is not large.
3. Methods

3.1. Human studies

3.1.1. Participants
Observers were four undergraduates at the University of Cali-

fornia—Santa Barbara (2 female; ages 18–21). All had normal or
corrected-to-normal vision.

3.1.2. Stimuli
Stimulus images consisted of two Gaussian blurred disks (lumi-

nance pedestals: SNR = 4.2; diameter: .6�) appearing 6� to either
side of central fixation embedded in a field of Gaussian noise with
a mean luminance of 25 cd/m2 and standard deviation of 4.9 cd/
m2. The noise field subtended a region spanning 22.2 � 22.2�.
One of the two pedestals had a contrast increment with a differ-

ence SNR of 0 (no signal), 2.7, or 4.0 where SNR ¼
ffiffiffiffiffi
EDs

p
r . E is the sig-

nal energy of the difference signal (target – pedestal) defined as:
E ¼

P
x

P
yDs2

x;y and r is the standard deviation of the noise. Thin
black bounding boxes indicated potential target locations. The
luminance vs. grey level relationship of the display was linearized.

3.1.3. Task
Observers performed a spatial two alternative forced choice

(2AFC) task in which they were to indicate which of two locations
contained a brighter Gaussian-blurred disk luminance signal
by making a saccade to the target location. Observers initiated
each trial by fixating a central fixation point and pressing the space
bar.

3.1.4. Predictive cue conditions
In cued sessions, following a randomized 500–1500 ms delay, a

75% predictive precue appeared in the form of one of the black
bounding boxes turning white for 200 ms. Following another
500–1500 ms fixation period, a stimulus image appeared for
500 ms during which the first eye movement that deviated more
than 2� to the left or right from fixation was considered the re-
sponse. Binary (correct/incorrect) feedback was presented follow-
ing the response. If no eye movement response was made during
the stimulus interval, subjects were informed that no response
was selected and the trial was considered incorrect4 (see Fig. 1a
for trial structure). Following a 100-trial training session to familiar-
ize the observers with the task, observers performed twenty-four
100-trial cued sessions (except observer DB who completed twelve
sessions of 100 trials). Prior to the start of the first session, observers
were informed verbally and given an instruction sheet which indi-
cated that the precue would predict the target location on 75% of
the trials and on the other 25% of the trials, the target would appear
at the uncued location.
4 The choice of labeling trials as incorrect if no eye movement response was made
was to encourage observers to choose the location they believed to contain the target,
even if they were highly uncertain. Although the proportion of trials which fell into
this category was quite small (<2%), we performed alternative analyses in which we
threw out trials in which no eye movement response was made or counted any
deviation to either side of initial fixation (even if it were less than the 2� tolerance) as
the response. Neither analysis substantially impacted PCs (<1%) or any of the
following statistical tests.
3.1.5. Neutral cue condition
Interleaved with the predictive cue sessions were six 100 trial

neutral cue sessions. In neutral sessions, no precue appeared after
the initial fixation interval.

3.1.6. Eye position measurements
Gaze was monitored using an Eyelink 1000 infrared eye tracker

(SR Research) providing a monocular left eye track at a sampling
rate of 250 Hz. Changes in eye position that exceeded a velocity
of 35�/s and an acceleration of 9500�/s/s were considered to be
saccades.

3.2. Monkey studies

Two adult macaques performed a task similar to that the hu-
mans performed, with very similar images and procedures. Signal
to noise ratios were matched to those in the human study (0, 2.7,
and 4.0). The mean luminance of the background was 45.9 cd/m2

and the Gaussian noise standard deviation was 9 cd/m2. Monkey
K participated in 44 sessions of 100 trials. Monkey M participated
in 39 sessions of 100 trials. Unlike human observers, monkeys
were given a small juice reward for correct decisions and eye
movements were measured using the scleral search coil technique
using methods described in detail previously (Hafed, Goffart, &
Krauzlis, 2008). Monkey data were collected at the Salk Institute
for Biological Sciences, and all experimental protocols for the mon-
keys were approved by the Institute Animal Care and Use Commit-
tee and complied with Public Health Service Policy on the humane
care and use of laboratory animals.

3.3. Honey bees study

3.3.1. Task
Two Styrofoam boxes measuring 35 � 35 � 35 cm were placed

on a table separated by a distance of 70 cm. The table was
placed in front of the wall of Dr. Menzel’s lab building at the
Freie University of Berlin. The front part of the box was covered
with a colored paper for the various tasks (Fig. 1). The center of
the colored paper was perforated with a plastic tube providing
an opening that led to the inside of the box where a sucrose
plate was placed during training. There were four different color
discrimination tasks: green target vs. green distractor (SNR = 0);
blue target vs. blue distractor (SNR = 0); green target vs. yellow
distractor (medium SNR); blue target vs. grey distractor (high
SNR). The subjective color differences were calculated by apply-
ing a model of color vision of the honey bee (Vorobyev et al.,
2001). The three pairs were aimed to span three different dis-
criminabilities (low, medium and high d0). Each of the two boxes
containing the colored paper was placed on top of another box.
One of the two bottom boxes was covered with a black plastic
bag that was the cue and co-occurred with the target color
80% of the time (see Fig. 1b). The study was conducted at the
surroundings of the Department of Neurobiology at the Freie
University of Berlin.

3.3.2. Training
The first step in the procedure was to allow for the bees to learn

the location of the experimental set-up relative to the beehive. This
process required that a sucrose plate was placed first close to the
beehive and through a few hours progressively moved further
away until it was located nearby the experimental set-up and
eventually inside the boxes.

3.3.3. Experimental procedure
Training and testing of the bees to perform the various discrim-

ination tasks developed over a period of 45 days. To train the bees



5 Each time we switched the box positions and location of the cue, and reward,
boxes were thoroughly cleaned. However, there is the potential that some
pheromonal component remained in a box introducing non-visual cues.
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to fly and enter the box with the target color, a small dish with
sucrose was placed inside the box containing the target paper
color. Training with reward consisted of periods of 10–23 min
in which the bees entered one of the two boxes with the target
box paired with the sucrose. In the predictive cue condition, the
cue was also present during the training. After the training per-
iod, the sucrose plate was removed and the boxes were thor-
oughly cleaned. Following, the position of the target and
distractor boxes were placed left and right following a pre-
computed list of pseudo-random orders. The pairing with the cue
box was also determined by a different pre-computed pseudo-
random list. For another 10 min period, bee behavior was then
recorded without the presence of the sucrose plate. This 2nd
stage was referred to as the testing section of the experiment
and is the data reported in the results section. Target/distractor
color pairings were blocked with the exception of the blue–blue
condition that was interleaved with the green–yellow and blue–
grey conditions. Thus, the signal strengths were not strictly ran-
domized but contained some degree of uncertainty.

3.3.4. Data recording of bee decisions with hand coding
A single undergraduate assistant (naïve to the hypotheses of our

experiment) with experience in hand coding bee behavior coded
the behavior of each bee as they approached a box. If the bee cir-
cled around the box in close proximity, he would mark a C. If the
bee approached a box and landed on the front of the box the re-
search assistant would record an R (rest). If the bee entered the
hole but did not enter the box, the research assistant coded this
with H. Finally, if it entered the box, this would be documented
using H�.

3.3.5. Dependent variables
We calculated, for each box (target and distractor), the num-

ber of times a bee circled or rested the color paper box (target or
distractor). We then calculated for a session (training or testing)
a proportion by dividing by the total number of times a bee cir-
cled or rested on the target color box (and approached the cir-
cle) divided by the total number of bee circles and rests. For
simplicity we refer to this measure as the rest measure in
graphs. We also calculated similar proportion correct for the pro-
portion of times that bees entered the hole of the target-box out
of all box entries. Note that these measures, unlike the human
and monkey, are aggregates across many bees. The standard er-
rors were calculated across different days with the same stimuli.
The total numbers of observed choices were: for the rest mea-
sure: 310 for grey vs. blue, 296 for green vs. yellow, 168 for blue
vs. blue; for the hole entry measure: 698 for blue vs. grey; 1057
for green vs. yellow; 390 for blue vs. blue. The exception is the
blue vs. blue condition for which we had a single day of data
due to weather conditions. For the blue vs. blue condition, jack-
knifing techniques were used to estimate the standard error. We
calculated various measures of bee choices to attempt to isolate
instances for which the bees used non-visual cues (which are de-
tailed in the following section).

3.3.6. Potential confounds of non-visual cues
A fundamental potential problem in assessing visual discrimi-

nation by bees is their potential use of non-visual cues that can
introduce confounds. It is well-documented that honey bees have
a sophisticated pheromonal communication system with fifteen
known glands (Free, 1987; Leoncini et al., 2004). Queen, drone
and worker bees secrete these chemical compounds and elicit re-
sponses in other bees by direct contact For our task, this source
of confound could arise if early in the session from bees entering
a box and leaving a pheromonal compound (predominantly from
the Nasanov gland used by bees to mark attractive locations) in
the hole of the box with the reward dish.5 Other bees could poten-
tially use this pheromonal cue to decide whether to enter or not a
box. For example, a bee could rest on the box with the distractor pa-
per, approach the hole, and, in the absence of the pheromonal cue,
might not enter the distractor box and instead fly and enter the tar-
get box. To assess the use of non-visual cues, we evaluated accuracy
of the bees choosing the target box in the absence of visual informa-
tion (e.g., blue vs. blue paper task).

3.4. Model predictions for experimental conditions

3.4.1. Bayesian ideal observer
A one-dimensional Bayesian ideal observer (BIO) with signal

strength uncertainty of the three different d0s was generated to
provide a benchmark of optimal task performance (Eq. (8)). Be-
cause the model cueing effect depends on the indices of detectabil-
ity (d0) assumed for the signal strength uncertainty, we used
performance in the neutral cue condition for each individual hu-
man and monkey to independently estimate underlying d0s for
the three signal contrast/color pairing conditions. We estimated
three d0s (Eq. (3)) for each individual human and monkey as to best
predict performance in the neutral condition using a weighted (in-
versely to the measurement error) least squares optimization pro-
cedure (chi-square v2). For the zero signal strength condition, d0

was assumed to be zero. Therefore, estimates of underlying d0 were
only free to vary for the two non-zero signal strengths. For the hon-
eybees we estimated the indices of detectabilities for the decisions
aggregated across different honey bees. Estimated observer/organ-
ism d0s were then utilized in cued simulations to generate optimal
expected cueing effects for each human and monkey, and for the
collective bee data. Model predictions were generated through
ten iterations of 500,000 trial Monte Carlo simulations. The model
predictions represented the performance and cueing effect at-
tained by an optimal Bayesian observer with the signal strengths
(d0s) of the different organisms.

3.4.2. Additive bias/single threshold
The additive bias/single threshold model was fit to the behav-

ioral data for each human, monkey and the collective decisions
of the honeybees. Predictions were obtained using the estimated
indices of detectability from the neural condition and fitting the
single decision threshold (t in Eq. (14) or equivalently, b, in Eq.
(15)) to minimize the chi-square error (v2) between the predicted
and measured proportion correct for each stimulus strength condi-
tion. For the bee data we also fit the data estimating the indices of
detectability (d0s) from the valid/invalid cue data rather than using
the neutral conditions. Thus, in this fitting procedure there were
four fitting parameters: three indices of detectability (one per tar-
get/distractor discriminability) and a decision threshold.
4. Results

4.1. Cueing effect in honey bee choices

We report the proportion of correct choices by the bees using
two different measures: (1) Proportion of bee circles around or
rests on the target box (out of all the circling around and resting
reports on any of the two boxes). For simplicity, this measure is re-
ferred to in the figures as the rest measure. (2) Proportion of en-
tries on the target box (out of all entries on any of the two
boxes). Fig. 5a shows proportion correct choice for three stimulus
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Fig. 5. (a) Proportion correct for valid and invalid cue trials for three target/distractor discrimination conditions: blue target vs. blue distractor; green target vs. yellow
distractor; blue target vs. grey distractor. (b) Proportion correct for valid and invalid cue trials as a function of signal strength (target/distractor discriminability), d0
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conditions (blue vs. blue; green vs. yellow; blue vs. grey) for valid
and invalid. Results show an overall statistically significant overall
cueing effect for the rest on box measure (Pc valid > Pc invalid;
p < 0.05). When testing for significance for individual signal
strengths, the cueing effects did not reach statistical significance.
For the entry measure, the cueing effect was statistically significant
for the blue–blue condition but not for the green vs. yellow and
blue vs. grey conditions. Fig. 5b plots proportion correct against
the indices of detectability (d0) estimated from the neutral condi-
tion using each of the two bee choice measures. For comparison,
a Bayesian ideal observer prediction based on the estimated d0s
of each measure is shown. Overall performance attained by the
bees was higher for the box entries measure than the rest measure.
This is likely due to the use of additional non-visual information by
the bees in making their choices when entering the boxes (see next
section).
4.2. Assessing contributions of non-visual cues by honey bees

We used the blue vs. blue visual discrimination (without a cue)
to assess whether the bees’ decisions were being influenced by
other than the visual information. We reasoned that if the bees’
choices were based solely on visual information, then, in the blue
vs. blue discrimination, the bees’ accuracy at finding the target
box should be at chance. We made a second control condition
using a green vs. green discrimination task. We evaluated the
two dependent variables: (1) Proportion of circles or rests on target
box; (2) Proportion of entries to target box. For the proportion of
entries on the target box, bee performance was significantly above
chance (average across blue vs. blue and green vs. green condi-
tion = 0.575 ± 0.005; p < 0.05) even though there was no visual
information to identify the target box. Quantifying bee decision
by tallying the number of times bees circle around or rested on a
box for the no visual information conditions resulted in accuracy
of 0.465 ± 0.01 (p = 0.18) suggesting that this metric was not af-
fected or at least less influenced by non-visual cues.
4.3. Cueing effects for humans and monkeys

Proportion correct was calculated across signal contrasts for
both valid and invalid trials for each human and monkey observer.
Fig. 6 shows the individual data for each human and monkey (see
Table 1 for data). A significant cueing effect, defined as the differ-
ence in proportion correct between valid and invalid trials, was ob-
served for all four humans and both monkeys (see Table 2 for p
values, p < 0.05 false discovery rate (FDR) corrected), indicating
that all observers were utilizing the predictive cue to aid their per-
ceptual decision to at least some degree. Moreover, the size of the
cueing effect decreased for each increment of increasing signal
contrast for all observers (p < 0.05 FDR corrected; see Table 1 for
p values), a result predicted by the BIO (see Fig. 3). Across all signal
strengths all humans and both monkeys showed a cueing effect
that was inferior to that of the optimal Bayesian model.
4.4. Comparison to additive bias/single threshold model

Fig. 6 shows fits of AB/ST model to each individual data for the hu-
mans and monkeys using a single fitting parameter (the threshold)
per observer. The d0s were independently estimated for each individ-
ual (human and monkey) from the neutral condition for each signal
contrast condition. The model resulted in good fits for each individ-
ual human and monkeys (all reduced chi-squares, v2/df < 1;
p > 0.41). The same model was also used to fit the aggregate of honey
bee choices using the neutral conditions to independently estimate
the indices of detectability (d0s). Fig. 5b shows the fits of the model to
the bee behavior using both measures of choice (rest and entries to
boxes). The quality of the model fits were inferior compared to the
human and monkeys, in particular for the data with the rest on
box measure which could be rejected (v2/df = 3.73; p = 0.0023; for
the rest measure andv2/df = 1.5; p = 0.18 for the box entry measure).
Because the neutral cue conditions for the bees were conducted in
separate days than the valid/invalid cue conditions (unlike the hu-
man/monkey studies for which conditions were interleaved), it is
likely that, for the bees, the d0s estimated from the neutral conditions
might not be representative of the d0s in the valid/invalid cue condi-
tions. We therefore also fit the model to the data estimating the d0s
from the valid/invalid cue data resulting in four fitting parameters:
decision threshold and three d0s. Fig. 5c shows the results of the fits
for the four parameter additive bias/single threshold model. The four
parameter model fits resulted in a better fit for the rest on box mea-
sure (v2/df = 1.65; p = 0.43) but inferior for the box entry measure
(although the model could not be rejected; v2/df = 1.5; p = 0.06).
4.5. Cross species comparisons

Given the similarity of the human and monkey tasks, direct
comparisons between the magnitudes of their cueing effects can
be made. Pairwise comparisons revealed that all four human
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Fig. 6. Proportion correct for valid and invalid cue trials as a function of the estimated detectability of the three signal contrasts in the neutral condition. Continuous lines,
Bayesian ideal observer for each observer and their corresponding estimated d0s from the neutral condition. Human observers: CH, DB, DD, JP; Monkeys: K and M. Dotted line
is the single threshold model with one fitting parameter for each individual.

Table 1
Descriptive statistics for cueing effect and standard deviation for each signal strength
condition (zero, medium, high and overall). n is the number of sessions, SD is the
standard deviation.

n Overall SD Zero SD Med SD High SD

Descriptive statistics
CH 24 0.30 0.13 0.53 0.25 0.25 0.22 0.13 0.10
DD 24 0.41 0.13 0.57 0.23 0.42 0.19 0.23 0.18
JP 24 0.32 0.14 0.48 0.25 0.29 0.19 0.19 0.18
DB 12 0.36 0.09 0.52 0.22 0.38 0.12 0.18 0.17
mK 45 0.24 0.06 0.34 0.11 0.25 0.08 0.12 0.07
mM 40 0.19 0.23 0.28 0.27 0.18 0.25 0.11 0.20

df t p

Cueing effect > 0 (one tailed)

CH 23 11.09 5.22E�11
DD 23 14.78 1.56E�13
JP 23 11.36 3.27E�11
DB 11 13.80 1.37E�08
Monkey K 44 25.68 2.04E�28
Monkey M 39 5.23 3.06E�06

Zero > Med Med > High Zero > High

df t p t p t p

Size of cueing effect across contrasts (one tailed)
CH 23 5.36 9.63E�06 2.54 9.11E�03 7.30 9.93E�08
DD 23 2.67 6.84E�03 3.98 2.94E�04 6.38 8.20E�07
JP 23 3.07 2.72E�03 2.23 0.018 5.06 1.99E�05
DB 11 2.05 0.032 2.93 6.91E�03 3.80 1.47E�03
Monkey K 44 5.22 2.33E�06 9.79 6.33E�13 11.40 5.10E�15
Monkey M 39 5.05 5.37E�06 4.70 1.59E�05 7.67 1.32E�09

6 Invalid cue trials for which the target appears at the uncued location can be
described by similar distributions of the difference in internal response (cued location
minus uncued location) but with the distribution means being the negative of the
means of the distributions in Fig. 8.
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observers displayed larger cueing effects than both monkeys
(p < .05 FDR, one tailed; Table 2), while the two monkeys’ cueing
effects did not differ significantly from each other. To compare
the effect of cues across all three species, Fig. 7a shows valid and
invalid cue performance for the three animals plotted against over-
all proportion correct for each signal strength condition. For com-
parison the graph shows the BIO matched to the discrimination
ability of the human observers. All monkeys, human and bees pro-
duced a cueing effect significantly smaller than that predicted by a
BIO. Fig. 7b also shows performance for valid and invalid cue trials
plotted against the estimated d0s (average estimates for humans
and monkeys). Fig. 7b shows the fits additive bias/single threshold
model (AB/ST model) to all data sets. The fits for the average hu-
man and monkey data are the averages of the model predictions
for each individual. For the bees, Fig. 7b shows the fits of the four
parameter model which gave overall a better fit. Fig. 7b shows that
the relationship across animals’ cue effects is preserved when plot-
ting performance against overall proportion correct (Fig. 7a) or the
estimated d0s.

Fig. 8 shows a graphical representation of the AB/ST model’s
estimated distributions of the organisms’ decision variable for each
signal strength and estimated decision thresholds (vertical lines).
The x-axis is the difference between the internal response to the
cued and uncued location (xc–xu) for valid cue trials (target is pres-
ent at cued location).6 Each distribution corresponds to a signal
strength (low, medium and high) estimated from neutral cue condi-
tions. For example, the mean difference of internal responses for
cued and uncued locations is zero for the low SNR because, for these
cases, the target has zero contrast and the visual information at cued
and uncued location is on average identical containing only pedes-
tals (the bee box entry distribution is an exception which the non-
visual cues led to a non-zero mean distribution for the low SNR



Table 2
Pairwise statistical tests for human and monkey data.

Obs >DD >JP >DB >mK >mM >BIO

df t p df t p df t p df t p df t p df t p

CH 46 �2.62 0.012 46 �0.33 0.74 34 �1.35 0.19 67 2.75 7.64E�03 62 2.21 0.031 23 �8.25 2.51E�08
DD 46 2.26 0.029 34 1.01 0.32 67 7.04 1.31E�09 62 4.17 9.61E�05 23 �4.55 1.44E�04
JP 34 �1.03 0.31 67 3.26 1.77E�03 62 2.45 0.017 23 �7.64 9.28E�08
DB 55 5.48 1.08E�06 50 2.52 0.015 11 �6.41 5.03E�05
Monkey K 83 1.37 0.17 44 �31.29 1.06E�31
Monkey M 39 �9.35 1.65E�11
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honey bees. Color dashed lines are the best fit of the additive bias/single threshold model. The human and monkey data are single parameter fits (decision threshold) while
the bee data shows fits with d0s and the decision threshold as fitting parameters. Black line shows the Bayesian ideal observer prediction (for humans) for comparison.
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Fig. 8. Estimated human, monkey and honey bee decision thresholds and d0s for three signal strength conditions using the additive bias/single threshold model. The x-axis
corresponds to the decision variable: difference between the response to the cued and uncued location for valid cue trials. For invalid cue trials the dotted vertical line
corresponds to a threshold at zero (optimal for neutral cue trials); leftmost vertical black solid lines correspond to the optimal threshold which maximizes performance
(proportion correct, PC) for a cue with 75% validity and signal strength uncertainty; colored lines are decision thresholds to best fit for each animal for a cue with 75% validity.
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condition). The two other distributions of each panel correspond to
the difference between the internal responses to cued and uncued
locations (for valid cue trials for which the cued location contains
the target) for the medium and high SNR. The colored lines correspond
to the AB/ST model’s decision threshold to best fit the data from the
different animals. Different panels correspond to different animals.
There are two panels for the bee data corresponding to the rest on
box and entry box measures. The negative values for the estimated
decision thresholds indicate that all three organisms selected the cued
location even when the internal response to the uncued location was
greater than the cued location (negative difference in internal re-
sponses). This is consistent with a bias to choose the cued location gi-
ven its predictive value (75%) even when there is some sensory
evidence favoring the uncued location. For comparison, Fig. 8 also
shows the decision threshold for the AB/ST model (leftmost black con-
tinuous vertical lines) that maximizes overall proportion correct for
each species.7 Results show that the AB/ST model’s estimated decision
threshold from the data (colored vertical lines) is closer to the model’s
optimal decision threshold (black continuous lines) for human
observers, followed by the monkeys and honeybees. Differences be-
tween the optimal and estimated animal decision thresholds were:
�0.492 ± 0.027 for the human; �0.87 ± 0.03 for the monkeys and,
for the bees, �2.90 ± 0.052 for the rest measure and �0.82 ± 0.047
for the entry to box measure. All differences were statistically signifi-
cant (p < 0.05).

5. Discussion

5.1. The use of probabilistic spatial cues by honeybees

The goal of the present work was to assess whether an organism
with a small brain (volume: 1 mm3, about 1 million neurons) with-
out a layered cortex can show cueing effects similar to those mea-
sured in humans, monkeys, rats (Bushnell & Rice, 1999; Marote &
Xavier, 2011) and pigeons (Shimp & Friedrich, 1993). Previous
studies have shown that bees can learn coarse and fine visual dis-
criminations (Srinivasan, 2010) as well as complex shapes (Giurfa,
Stach, & Müller-deisig, 1999; Zhang et al., 2004; for a review see,
Menzel, Brembs, & Giurfa, 2007). In relation to experimental
manipulations typically associated with visual attention, a study
has shown that prior visual experience with a target pattern can
speed up its detection by bees (Zhang et al., 2004). Also, the effect
of number of distracters on search for a target disc increases bee
decision times and decreases accuracy in a similar manner as it
does for humans (Spaethe, Tautz, & Chittka, 2006). However, no
study has assessed the ability of honeybees to learn a probabilistic
association which can aid a visual discrimination similar to the
Posner paradigm (Posner, 1980). Our results show that honeybees
can use predictive cues which results in a behavioral cueing effect
akin to that observed in humans, albeit smaller in size.

The presence of a cueing effect in the behavior of the bees is not
consistent with the concept that the honeybees ignore the pres-
ence of the cue and base their decision solely on the target/distrac-
tor information. In addition, we can conclude that bees are not
making their decision solely based on the cue and ignoring the sen-
sory information in the target/distractor. The variation of bee per-
formance with target–distractor discriminability suggests that the
bee is integrating information about the target/distractor visual
discrimination with that provided by the presence of the cue.

One potential confound in the study is the possibility that bees
were using non-visual cues to make their 2 AFC choices. In partic-
7 Note that in this case, the AB/ST model’s decision threshold is iteratively varied
not to fit human data but rather to maximize the proportion of correct trials. The
optimal threshold for the AB/ST model can also be interpreted as the threshold that
leads the AB/ST model to best approximate the optimal Bayesian observer.
ular, there was the possibility that the bees were using pheromonal
(Free, 1987) components at the target box which is used as a non-
visual cue for other bees to make their choices. Our control condi-
tion in which there was no visual information (blue vs. blue) or cue
indicating the probable location of the sucrose plate led to chance
performance when we used the rest on or circle around box behav-
ioral measure. In contrast, measuring the proportion of entries on
the target box seemed to be contaminated by non-visual cues.

A second limitation of our procedure is that our recorded deci-
sions were not based on decisions by individual independent deci-
sions. Thus, there is a possibility that our measurements reflect
decisions by a few bees which then communicated their choices
to other bees (Menzel, De Marco, & Greggers, 2006; Menzel et al.,
2011). However, there was no indication that bees communicated
anything about the visual stimulus conditions at the goal. Further-
more, the tested bees were trained for quite some time, and this
would likely override anything they have learned by the communi-
cation process inside the hive.

Finally, the study was intended to measure to how the spatial
cues impact choices but controlling for possible effects due to low-
er level sensory sampling. For example, human and monkey stud-
ies often control for possible eye movements prior to a choice
decision because foveation of the cued location prior to a decision
could introduce improvements in detection or discrimination per-
formance related to the high resolution processing of the fovea. In
the current study, the monkeys and humans made their choice
with a saccade to match the spatial eccentricity of targets at the
cued and uncued locations. However, there was no such control
for the honeybees. The choice of the bees involved flying toward
the target box and thus changes in the image falling in their com-
pound eyes preceded the choice behavior. Furthermore, studies
have shown that different regions of the bee’s compound eye (ven-
tral, dorsal and frontal) have different properties processing visual
stimuli (Giurfa, Zaccardi, & Vorobyev, 1999). In particular, color
detection efficiency cue varies depending on the region of the com-
pound eye and the visual extent of the color cue. For our task for
which the boxes were arranged vertically it is likely that the visual
choice is based on visual processing by the frontal region of the
bee’s eye while in flight. However, we cannot discard that flight to-
wards one of the boxes introduced variations in sensory processing
of the target/distractor colors, although our honeybee experiment
counterbalanced the use of leftward and rightward targets to indi-
cate the more likely location.

5.2. Effect of target/distractor discriminability (SNR) and signal
strength uncertainty on the cueing effect in biological organisms and
optimal observers

Studies have shown that, for humans, the size of the cueing
effect varies across signal detectability (Shimozaki, Eckstein, &
Abbey, 2003; Shimozaki, Schoonveld, & Eckstein, 2012). For the
forced-choice version of the cueing paradigm the cueing effect in
humans diminishes with increasing target/distractor discrimina-
bility.8 In the present study we show a similar trend in all three
organisms: humans, monkeys, and, to a lesser degree, bees. A similar
variation in the cueing effect is also present in an optimal Bayesian
observer. For a blocked condition with zero SNR, there is no target/
distractor information to utilize for the decision and the optimal
algorithm always chooses the cued location (Fig. 3). For very high
target/distractor discriminabilities, the non-linear likelihood calcula-
tion diminishes the effect of the prior so that choices are driven by
8 For the standard yes/no Posner cueing paradigm, the cue effect diminishes for low
and high target/distractor discriminability and reaches a maximum at mid-range
values for target/distractor discriminability (Eckstein et al., 2009; Shimozaki et al.,
2003)



9 In addition, for the case of the bees the choice behavior was recorded over many
bees and in fact there is no guarantee that all bees underwent the same amount of
training, and in such a situation the learning of a more complex rule may not have
fully developed in some bees.
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the sensory responses to the target and distractor. However, the var-
iation of the cueing effect with target/distractor discriminability is
much larger for the optimal Bayesian observer than the humans
(Shimozaki, Schoonveld, & Eckstein, 2012).

The theoretical results in the current paper show that uncer-
tainty about the stimulus strength (or target/distractor discrimina-
bility) diminishes the maximum cueing effect and reduces its
variation with target/distractor discriminability for an optimal
Bayesian observer. This might suggest that even when stimulus
strength is blocked and known, humans and other animals might
have either intrinsic uncertainty about the stimulus strength or
adopt a default strategy that allows for some unexpected variation
in target/distractor discriminability. A strategy that assumes some
possible change in the stimulus strength across trials might be sub-
optimal in a blocked stimulus strength study but a well-adaptive
strategy for the dynamic environment such as the real world (Vin-
cent, 2012). However, our results show that even when taking into
consideration the stimulus strength uncertainty in the tasks in
which the humans and monkeys participated, the optimal Bayesian
observer still shows a larger cueing effect than humans and mon-
keys. Thus, stimulus strength uncertainty cannot entirely account
for the reduction in cueing effect and there must be other sources
of suboptimality in the organisms. For humans, having to generate
a choice decision with an eye movement rather than a finger-press
might lead to some suboptimalities. A recent study has shown that
the effect of cues on saccadic eye movements is not as prominent
as with perceptual decisions, although it should be noted that in
that study the observers were not instructed to use an eye move-
ment to make a response (Shimozaki, Schoonveld, & Eckstein,
2012).

5.3. Simpler biologically plausible implementations of the optimal
decision rule for the scenario of stimulus strength uncertainty

A well-known result is that for the case of a 2-AFC task, the opti-
mal Bayesian model is mathematically equivalent to a single
threshold model. The single threshold model can be implemented
equivalently by an additive bias to the response to the cued loca-
tion followed by a maximum operation when comparing neural re-
sponses arising from the cued vs. uncued locations. To achieve
optimality the additive bias needs to be related to the cue validity
and the stimulus strength (Eq. (14)). This is arguably a more bio-
logically plausible decision rule than the full weighted likelihood
calculation (Eq. (12)) and could be implemented in the nervous
system of a variety of species. However, unknown was whether a
model with an additive bias could approximate an optimal Bayes-
ian model for the case of a cueing task with signal strength uncer-
tainty. Our theoretical results show that an additive bias can be a
good approximation to the more computationally complex sum
of weighted likelihood ratios of the optimal Bayesian algorithm.
Thus, our theoretical results further generalize the use of an addi-
tive bias model to approximate the BIO from the 2 AFC (Green &
Swets, 1989) and yes/no cueing task (Eckstein et al., 2009) to the
scenario of signal strength uncertainty. Our results are for Gaussian
distributed responses but as previously shown these models can
generate similar decision rules and predictions for the often
encountered Poisson distributions used to model spike rates (Eck-
stein et al., 2009).

In addition, our results show that the additive bias/single
threshold model results in good fits to the animal data. Arguably,
the fits to the honey bee data were inferior, in particular for the
rest measure when the d0s were independently estimated from
the neutral cue condition data. The inferior quality of model fits
for the honey bees is not surprising given that the neutral cue con-
dition data was collected in separate days than the valid/invalid
cue data. Furthermore, there is no guarantee that the same set of
bees participated in both conditions. When the d0s were estimated
from the valid/invalid cue condition the fit of the model to the cir-
cle around or rest on box measure data improved and the model
could not be rejected for either measure (box entry and circle
around or rest on box measure). In summary, our results suggest
that the additive bias is a likely biologically plausible computation
that can account for the behavioral cueing effects in the animals.

5.4. Spatial cueing effects across species: What is unique about human
visual attention in the spatial cueing paradigm?

Our results have some interesting implications about how we
think about human visual attention. The spatial cueing paradigm
is meant to probe covert visual attention. The cueing effect is typ-
ically attributed to the allocation of covert visual attention to the
cued location. Although there are different models about what
mechanisms gives rise to the cueing effect, most studies have an
implicit assumption that the cueing effect studies are probing a
mechanism that is similar to human’s ability, at will, to select or
process different locations of a visual scene: covert visual
attention.

Our results and previous findings show that a great variety of
organisms including monkeys, rats, pigeons and honeybees can
use probabilistically informative spatial cues to optimize their
behavioral choices. In this study, we compared cueing effects in
humans, monkeys and bees in a similarly structured task. Notably,
our results demonstrate that a mammalian brain with a layered
cortex is not a requirement for an organism to use probabilistic
cues.

Thus, we might ask whether there is something unique about
human visual attention as measured in a spatial cueing task. One
possible interpretation of our results is that humans show cueing
effects that are closer to an optimal observer than those shown
by monkeys. In turn, monkeys are closer to optimality than bees.
However, the shortcoming of such interpretation is that the differ-
ences in the details of the tasks make it difficult to assess whether
these comparisons are sensible. With humans, the investigator ver-
bally communicates to the subjects the validity of the cue in pre-
dicting the target location. With the monkey and bee studies, the
animals learned the association between the cue and the presence
of the visual target through rewards given to correct decisions.9

Thus, it might be that if humans are not communicated cue validities
they are less optimal. For example, when humans have to learn cue
probabilities, rather than being verbally communicated about their
validity, they are less optimal at using the probabilistic cues (Droll,
Abbey, & Eckstein, 2009). Therefore, we might conclude that what
is unique about orienting human visual attention in humans is that
it can be the consequence of the communication. However, even that
might not be exclusive to humans. In more ecological settings, hon-
eybees have the ability to communicate locations of food (Seeley &
Visscher, 2008; von Frisch, 1933). Monkeys, like humans, also can
orient attention of other monkeys with gaze (Deaner & Platt, 2003;
Emery et al., 1997). Then, perhaps, what is unique to humans is
the potential ability to communicate numerical representations of
the cue validity that could potentially lead to more accurate priors
and more optimal behavior.

Aside from this discussion, the current results, together with
those obtained with pigeons and rats, indicate that it might be a
simplification to conceptualize visual attention as a unitary process
required to give rise to a cueing effect (Anderson, 2011) but instead
it might prove useful to think of the ability to use predictive cues as
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a graded phenomenon which might be exploited with varying effi-
ciency across species and across methods used to convey the infor-
mation about the validity of the predictive cues (Droll, Abbey, &
Eckstein, 2009; Druker & Anderson, 2010; Geng & Behrmann,
2005; Walthew & Gilchrist, 2006).
Appendix A. Optimal Bayesian observer for 2 AFC with known
signal strength

The optimal Bayesian observer for a 2 AFC is a standard result
(Green & Swets, 1989) and is included in the Appendix for
thoroughness.

There are two hypotheses:
H1: target at cued locations; H2: target at uncued location
The posterior probability for each hypothesis is proportional to

the product of the likelihood and the prior:

PðHijgÞ � PðgjHiÞPðHiÞ ¼ pðxc; xujHiÞPðHiÞ

where xc and xu are the sensory responses at the cued and uncued
location and subscript i = 1 or 2.

The decision rule on each trial is:
If pðxc; xujH1ÞPðH1Þ > pðxc; xujH2ÞPðH2Þ then choose cued loca-

tion (H1) otherwise choose uncued location (H2).
For the case that each location elicits an internal response that

is Gaussian (with equal unit variance) and independent, the likeli-
hood of the responses at the cued and uncued locations given each
hypothesis are given by:

pðxc; xujH1Þ ¼ pðxcjH1ÞpðxujH1Þ

¼
ffiffiffiffiffiffiffi
1

2p

r
exp½�0:5ðxc � d0Þ2�

ffiffiffiffiffiffiffi
1

2p

r
exp �0:5x2

u

� �
pðxc; xujH2Þ ¼ pðxcjH2ÞpðxujH2Þ

¼
ffiffiffiffiffiffiffi
1

2p

r
exp �0:5x2

c

� � ffiffiffiffiffiffiffi
1

2p

r
exp �0:5ðxu � d0Þ2

h i

where the response from the target distribution has a mean d0.
After some algebra the likelihoods become:

pðxc; xujH1Þ ¼ pðxcjH1ÞpðxujH1Þ

¼ 1
2p

exp �ð0:5x2
c � xcd0 þ 0:5d0Þ2

h i
exp �0:5x2

u

� �
pðxc; xujH2Þ ¼ pðxcjH2ÞpðxujH2Þ

¼ 1
2p

exp �ð0:5x2
u � xud0 þ 0:5d0Þ2

h i
exp �0:5x2

c

� �

Simplifying common terms by dividing likelihoods by
1

2p exp �0:5x2
c

� �
exp �0:5x2

u

� �
exp �0:5d02

h i
, the decision rule

becomes,

PðH1Þ expðxcd0Þ > PðH2Þ expðxud0Þ

Taking the logarithm, and replacing P(H1) by pc and P(H2) by pu:

logðpcÞ þ xcd0 > logðpuÞ þ xud0

or re-arranging terms we obtain:
If xc þ 1

d0
log pc

pu

� �
> xu then choose cued location otherwise

choose uncued location.
Similarly one can express the decision rule in terms of the dif-

ference of the responses from cued and uncued location exceeding
a decision threshold:

If xc � xu >
1
d0

log pc
pu

� �
then choose cued location, otherwise

choose uncued location.
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