We carry out applied science in honey bee biology in our work on bee pathology, and in particular, varroosis. Our goals are understanding the host-parasite relationship and developing chemical-therapeutical strategies against Varroa destructor.
Our activities include also services such as ongoing education for beekeepers and government authorities, public relations work, such as preparing scientific topics for museum exhibitions, and taking the initiative in the national and European Union drug approval matters.
Our current research projects on honey bees are:
Our work involves optimizing varroosis treatment processes and developing medicaments and methods to their final application stage. To achieve this, substances are being screened and laboratory testing is being carried out: we investigate possible side effects for bees and the toxic effects of these substances on mites to establish an individual therapeutical dosage. The aspects residues in bee products as well as user and consumer safety are part of our work. Factors are being studied that influence the distribution and efficacy of the substances introduced into the complex system of the bee colony; these studies help develop more effective methods of applying the substances. Therapeutic dosages for colonies are then calculated and tested, first with standardized experimental populations, and secondly, under actual field conditions, at various locations, in order to establish both recommendations for use and to create a database according to the requirements for national or European registration for certification of these substances for use as veterinary drugs. To obtain approval as a veterinary drug, a dossier has to be established on effectiveness against the parasite, tolerability by bee colonies, residue situation and consumer safety according to the requirements of the national and European legislation.
Results of these activities are:
a) Formic acid, in the long-term evaporating form (vacuum evaporator), was approved as a veterinary drug in Germany on July 12th, 2000 (Bundesgesetzblatt Teil I, Nr. 31 vom 11. Juli 2000). Meanwhile it is also used in many countries worldwide as a medicament.
Due to a change in legislation it was possible to get formic acid freed from its ‘may be sold only in pharmacies’-status in Germany (Decision of Dec. 15, 2003 of the German Bundesrat). This means formic acid can be sold in beekeeper supply stores. But it is still a drug, with all requirements according to the standard approval status regarding quality, concentration, rules of application and packaging. The producer must be licensed to manufacture the medicament.
b) In cooperation with the Mayen Dept. of Bee Research (Fachzentrum Bienen und Imkerei Rheinland-Pfalz) and the German Beekeepers' Society (Deutscher Imkerbund e.V.), the formal application process for lactic acid, applied as a spray, has been initiated. The approval as a drug for bees followed on June 27, 2003 (Bundesgesetzblatt Teil I, Nr. 27 vom 26. Juni 2003). As formic acid, lactic acid could be freed from its ‘may be sold only in pharmacies’-status in Germany (Decision of Dec. 15, 2003 of the German Bundesrat).
c) Ethereal oils, especially thymol, are being investigated in cooperation with the Bee Research Institute Hohen Neuendorf (Länderinstitut für Bienenkunde). A standardized thymol mono-preparation was investigated for its acaricide effect, side effects, and residues in bee colonies in styrofoam hives in north-central Europe in order to complete the database for approval as a veterinary drug. Thymol was approved as a veterinary drug in 2006 under the trade name Thymovar.
d) Oxalic acid was developed to the final-use stage as a drug in bees by the European Working Group for Integrated Varroa Control (CA 3686). In all EU countries, government approval is only given to a new veterinary medicament for use in treating animal diseases after the EMA, the European Union’s Agency for Evaluating Medical Products, has determined the maximum residue limit (MRL) of the active ingredient allowed in the final food product according to European legislation. This procedure is meant to protect consumers from toxicologically critical residues in foods resulting from medicines used on animals. For oxalic acid no MRL was available. The MRL establishing procedure was started in cooperation with A. Imdorf (Agroscope Liebefeld-Posieux, Swiss Bee Research Centre), J.M Poul (Agence Française de Sécurité Sanitaire des Aliments) and A. Wibbertmann (Fraunhofer Institute for Toxicology and Experimental Medicine), carried out as a joint project of many European countries and successfully finished in December 2003: oxalic acid was listed in Annex II of Council Regulation (EEC) 2377/90 (Rademacher and Imdorf , 2004). This means that the substance is evaluated as not dangerous, and no residue limit is needed to protect the consumer. On this basis every European country can apply for approval and the Concept of Integrated Varroa Control, as recommended by the scientific institutes for bee research, can legally be implemented. It was the first time that scientific institutes and beekeeper organisations worked together on a European level to establish the legal basis for drug approval in bees.
For Germany the formal application process was initiated in May 2004. On December 23, 2005. Oxalic acid was approved by the “Bundesrat” on September 22, 2006, as a veterinary drug for Germany and published in the “Bundesgesetzblatt” in Oktober 2006 (Bundesgesetzblatt Teil I, Nr. 48 vom 26.Oktober 2006). The veterinary drug oxalic acid may be sold only in pharmacies; no prescription is required.
In medical treatments of honey bee colonies against threats as Varroa destructor or other pathogens, one method is to apply an agent with contact toxicity by trickling into the hive. A combination with sugar water supports the distribution and effect of the agent, but also leads to ingestion by the bees. The aim of our studies was to find a substitute to sugar water, which should have the same properties but neither being ingested by the bees, nor being toxic to them. Toxicity and distribution of the substances were tested by single bee treatment and in small units in the laboratory and for visualising internal hive distribution of the substance a Macro CT scanner was used.
We investigated the effect of organic acids after individual dermal treatment on the pH of parts of the digestive system and the haemolymph. We applied 13C marked acid and use HPLC/MS detection measures.
Furthermore, we study the sublethal effects of organic acids on a number of bee behaviours such as division of labour, activity, olfactory learning and also the longevity. This includes field behavioural observations and training in a classical olfactory conditioning (PER).
Mites' reproductive success and their behavior in the beehive determine their capacity to cause harm. Our work aims toward a better understanding of the parasite/host biology, in order to develop methods to limit the damage done to the bees.
Using long-term investigations of mite populations, we try to understand their growth as it is influenced by the surroundings and behavior patterns of both mites and bees. Here we study the individual reproduction rates of Varroa destructor, their increase during the yearly life cycle, individual mites' invasion strategies, and invasion pressure on the bee colony.
For pdf see publications of the Menzel Group